BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18267676)

  • 1. Microdefocusing method for measuring acoustic properties using acoustic microscope.
    Kanai H; Chubachi N; Sannomiya T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):643-52. PubMed ID: 18267676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of construction mechanism of V(z) curves obtained by line-focus-beam acoustic microscopy.
    Ono Y; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1042-50. PubMed ID: 18238639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.
    Aoyagi T; Nakazawa M; Tabaru M; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1761-8. PubMed ID: 19686992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ray representation of longitudinal lateral waves in acoustic microscopy.
    Chan KH; Bertoni HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):27-34. PubMed ID: 18267553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for calibrating the line-focus-beam acoustic microscopy system.
    Kushibiki JI; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):421-30. PubMed ID: 18244193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of reflected waves from the back surface of thin solid-plate specimen on velocity measurements by line-focus-beam acoustic microscopy.
    Kushibiki JI; Ohashi Y; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):274-84. PubMed ID: 18238540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of velocity and attenuation of leaky waves using an ultrasonic array.
    Titov S; Maev R; Bogachenkov A
    Ultrasonics; 2006 Feb; 44(2):182-7. PubMed ID: 16376398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement method of particle concentration and acoustic properties in suspension using a focused ultrasonic impulse radiated from a plano-concave transducer.
    Kobayashi T; Tai H; Kato S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e491-6. PubMed ID: 16793082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy.
    Chen J; Bai X; Yang K; Ju BF
    Rev Sci Instrum; 2012 Jan; 83(1):014901. PubMed ID: 22299973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lamb wave lens for acoustic microscopy.
    Atalar A; Koymen H; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):661-7. PubMed ID: 18267679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.
    Chen J; Bai X; Yang K; Ju BF
    Ultrasonics; 2015 Feb; 56():505-11. PubMed ID: 25448428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of sintered piezo-electric ceramic material using scanning acoustic microscope.
    Habib A; Shelke A; Vogel M; Pietsch U; Jiang X; Kundu T
    Ultrasonics; 2012 Dec; 52(8):989-95. PubMed ID: 22989949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of periodic surface roughness on V(z) curves for the line-focus acoustic microscope.
    Li ZL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(6):680-6. PubMed ID: 18263234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of Pulsed Ultrasonic Velocimetry system and transducer technology for industrial applications.
    Kotzé R; Wiklund J; Haldenwang R
    Ultrasonics; 2013 Feb; 53(2):459-69. PubMed ID: 23062698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of transverse bulk and surface acoustic waves in LiNbO (3) variable time-delay devices.
    Thaxter JB; Carr PH; Silva JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):525-30. PubMed ID: 18290183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of the leaky SAW attenuation with heavy mechanical loading.
    Koskela J; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):439-49. PubMed ID: 18244195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the multiple local properties of thin layer with high lateral resolution by scanning acoustic microscopy.
    Bai X; Sun Z; Sun A; Chen J; Ju BF
    Rev Sci Instrum; 2014 Sep; 85(9):094901. PubMed ID: 25273758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology.
    Ishikawa I; Katakura K; Ogura Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):41-6. PubMed ID: 18238397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of material elastic constants of trabecular bone: a micromechanical analytic study using a 1 GHz acoustic microscope.
    Jørgensen CS; Kundu T
    J Orthop Res; 2002 Jan; 20(1):151-8. PubMed ID: 11853082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.