BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18267676)

  • 21. Characterizing ultra-thin matching layers of high-frequency ultrasonic transducer based on impedance matching principle.
    Wang H; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):211-5. PubMed ID: 15055811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double-layer PVDF transducer and V(z) measurement system for measuring leaky Lamb waves in a piezoelectric plate.
    Lee YC; Kuo SH
    Ultrasonics; 2007 Mar; 46(1):25-33. PubMed ID: 17113617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of leaky surface acoustic wave velocity of glass substrates on frequency variation of ZnO/glass SAW filters.
    Kadota M; Kitamura T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):817-22. PubMed ID: 18238483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Ultrasonic tissue characterization of parotid tumors--analysis with the acoustic microscope].
    Nishio T
    Nihon Jibiinkoka Gakkai Kaiho; 1989 Jun; 92(6):851-63. PubMed ID: 2681618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wideband acoustic microscopy of tissue.
    Daft CW; Briggs GD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):258-63. PubMed ID: 18284976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.
    Shou W; Huang X; Duan S; Xia R; Shi Z; Geng X; Li F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e17-20. PubMed ID: 16860359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of velocity variations along a wave path in the through-thickness direction in a plate.
    Kawashima K
    Ultrasonics; 2005 Jan; 43(3):135-44. PubMed ID: 15556648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies.
    Meunier A; Katz JL; Christel P; Sedel L
    J Orthop Res; 1988; 6(5):770-5. PubMed ID: 3404335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic self-calibrated method applied to monitoring of sol-gel transition.
    Robin G; Vander Meulen F; Wilkie-Chancellier N; Martinez L; Haumesser L; Fortineau J; Griesmar P; Lethiecq M; Feuillard G
    Ultrasonics; 2012 Jul; 52(5):622-7. PubMed ID: 22325847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study of surface acoustic waves in (n11) GaAs-cuts.
    Zhang V; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):406-16. PubMed ID: 18244138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-frequency analysis of laser-excited surface acoustic waves based on synchrosqueezing transform.
    Liu Z; Lin B; Liang X; Du A
    Ultrasonics; 2020 Aug; 106():106147. PubMed ID: 32278891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A broadband spectroscopy method for ultrasonic wave velocity measurement under high pressure.
    Wang Z; Liu Y; Song W; Bi Y; Xie H
    Rev Sci Instrum; 2011 Jan; 82(1):014501. PubMed ID: 21280847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient surface velocity measurements in a liquid by an active ultrasonic probe.
    Casula O; Royer D
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):760-7. PubMed ID: 18244227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contact phase modulation method for acoustic nonlinear parameter measurement in solid.
    Vila M; Vander Meulen F; Dos Santos S; Haumesser L; Bou Matar O
    Ultrasonics; 2004 Apr; 42(1-9):1061-5. PubMed ID: 15047429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring elastic properties of bones and silicon from V(z) curve generated by multiply reflected signals.
    Kundu T; Jørgensen CS
    Ultrasonics; 2002 Apr; 39(7):515-24. PubMed ID: 12102395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new focusing ultrasonic transducer and two foci acoustic lens for acoustic microscopy.
    Maslov KI; Dorozhkin LM; Doroshenko VS; Maev RG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):380-5. PubMed ID: 18244135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of an ultrasonic inspection robot using an electromagnetic acoustic transducer for a Lamb wave and an SH-plate wave.
    Murayama R; Makiyama S; Kodama M; Taniguchi Y
    Ultrasonics; 2004 Apr; 42(1-9):825-9. PubMed ID: 15047391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.