These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18267685)

  • 1. Correlation-based aberration correction in the presence of inoperable elements.
    O'Donnell M; Engeler WE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):700-7. PubMed ID: 18267685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive multi-element synthetic aperture imaging with motion and phase aberration correction.
    Karaman M; Bilge HS; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1077-87. PubMed ID: 18244263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-aberration correction using signals from point reflectors and diffuse scatterers: measurements.
    O'Donnell M; Flax SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):768-74. PubMed ID: 18290214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closed loop ML algorithm for phase aberration correction in phased array imaging systems. I. Algorithm synthesis and experimental results [Ultrasound medical imaging].
    Fortes JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):259-70. PubMed ID: 18244124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation processing for correction of phase distortions in subaperture imaging.
    Tavh B; Karaman M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1477-88. PubMed ID: 18244344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small element array algorithm for correcting phase aberrations using near-field signal redundancy. Part II: experimental results.
    Li Y; Robinson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):49-57. PubMed ID: 18238516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photorefractive processing for large adaptive phased arrays.
    Weverka RT; Wagner K; Sarto A
    Appl Opt; 1996 Mar; 35(8):1344-66. PubMed ID: 21085246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. I. Basic principles.
    Nock LF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):489-95. PubMed ID: 18267660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles.
    Flax SW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):758-67. PubMed ID: 18290213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phase aberration correction method for ultrasound imaging.
    Karaman M; Atalar A; Koymen H; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):275-82. PubMed ID: 18263182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A speckle target adaptive imaging technique in the presence of distributed aberrations.
    Ng GC; Freiburger PD; Walker WF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):140-51. PubMed ID: 18244111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase aberration correction using near-field signal redundancy. I. Principles [Ultrasound medical imaging].
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):355-71. PubMed ID: 18244133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays.
    Seip R; Vanbaren P; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):706-13. PubMed ID: 18263259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigorous investigation of the array-tilt aberration for hexagonal, optical phased arrays.
    Hyde MW; Wyman JE; Tyler GA
    Appl Opt; 2014 Apr; 53(11):2416-24. PubMed ID: 24787412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.
    Anas EM; Kim JG; Lee SY; Hasan MK
    Phys Med Biol; 2011 Oct; 56(19):6495-519. PubMed ID: 21934193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.
    Song H; Fraanje R; Schitter G; Kroese H; Vdovin G; Verhaegen M
    Opt Express; 2010 Nov; 18(23):24070-84. PubMed ID: 21164754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VLSI circuits for adaptive digital beamforming in ultrasound imaging.
    Karaman M; Atalar A; Koymen H
    IEEE Trans Med Imaging; 1993; 12(4):711-20. PubMed ID: 18218466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small element array algorithm for correcting phase aberration using near-field signal redundancy. I. Principles.
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):29-48. PubMed ID: 18238515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A closed loop ML algorithm for phase aberration correction in phased array imaging systems. II. Performance analysis [Ultrasound medical imaging].
    Fortes JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):271-86. PubMed ID: 18244125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.