These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 18267700)

  • 1. Speaker normalization and adaptation using second-order connectionist networks.
    Watrous RL
    IEEE Trans Neural Netw; 1993; 4(1):21-30. PubMed ID: 18267700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic-cum-extrinsic normalization of formant data of vowels.
    T V A; A G R
    J Acoust Soc Am; 2016 Nov; 140(5):EL446. PubMed ID: 27908035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speaker normalization using cortical strip maps: a neural model for steady-state vowel categorization.
    Ames H; Grossberg S
    J Acoust Soc Am; 2008 Dec; 124(6):3918-36. PubMed ID: 19206817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonuniform speaker normalization using affine transformation.
    Bharath Kumar SV; Umesh S
    J Acoust Soc Am; 2008 Sep; 124(3):1727-38. PubMed ID: 19045663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factor analysis of auto-associative neural networks with application in speaker verification.
    Garimella S; Hermansky H
    IEEE Trans Neural Netw Learn Syst; 2013 Apr; 24(4):522-8. PubMed ID: 24808374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender classification in children based on speech characteristics: using fundamental and formant frequencies of Malay vowels.
    Zourmand A; Ting HN; Mirhassani SM
    J Voice; 2013 Mar; 27(2):201-9. PubMed ID: 23473455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speaker normalization for chinese vowel recognition in cochlear implants.
    Luo X; Fu QJ
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1358-61. PubMed ID: 16042003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating acoustic speaker normalization algorithms: evidence from longitudinal child data.
    Kohn ME; Farrington C
    J Acoust Soc Am; 2012 Mar; 131(3):2237-48. PubMed ID: 22423719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning for Talker-dependent Reverberant Speaker Separation: An Empirical Study.
    Delfarah M; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2019 Nov; 27(11):1839-1848. PubMed ID: 33748321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection of the second subglottal resonance and its application to speaker normalization.
    Wang S; Lulich SM; Alwan A
    J Acoust Soc Am; 2009 Dec; 126(6):3268-77. PubMed ID: 20000940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels.
    Gelfer MP; Mikos VA
    J Voice; 2005 Dec; 19(4):544-54. PubMed ID: 16301101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New transformed features generated by deep bottleneck extractor and a GMM-UBM classifier for speaker age and gender classification.
    Mallouh AA; Qawaqneh Z; Barkana BD
    Neural Comput Appl; 2018; 30(8):2581-2593. PubMed ID: 30363735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-expert and hybrid connectionist approach for pattern recognition: speaker identification task.
    Bennani Y
    Int J Neural Syst; 1994 Sep; 5(3):207-16. PubMed ID: 7866626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Causal Deep CASA for Monaural Talker-Independent Speaker Separation.
    Liu Y; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():2109-2118. PubMed ID: 33178880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An acoustical and perceptual study of vowels produced by alaryngeal speakers of Cantonese.
    Ng ML; Chu R
    Folia Phoniatr Logop; 2009; 61(2):97-104. PubMed ID: 19299898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speaker-dependent characteristics of the nasals.
    Amino K; Arai T
    Forensic Sci Int; 2009 Mar; 185(1-3):21-8. PubMed ID: 19162417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional influences on functional mapping of speech sounds in human auditory cortex.
    Obleser J; Elbert T; Eulitz C
    BMC Neurosci; 2004 Jul; 5():24. PubMed ID: 15268765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular and hybrid connectionist system for speaker identification.
    Bennani Y
    Neural Comput; 1995 Jul; 7(4):791-8. PubMed ID: 7584887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified neural-network-based speaker localization technique.
    Arslan G; Sakarya FA
    IEEE Trans Neural Netw; 2000; 11(4):997-1002. PubMed ID: 18249826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.