These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18267718)

  • 1. Conventional modeling of the multilayer perceptron using polynomial basis functions.
    Chen MS; Manry MT
    IEEE Trans Neural Netw; 1993; 4(1):164-6. PubMed ID: 18267718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery.
    Vaughn ML
    Neural Netw; 1999 Nov; 12(9):1259-1271. PubMed ID: 12662631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer perceptrons: approximation order and necessary number of hidden units.
    Trenn S
    IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing MLP networks using a distributed data representation.
    Narayan S; Tagliarini GA; Page EW
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(1):143-9. PubMed ID: 18263014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedforward neural network with adaptive reference pattern layer.
    Lehtokangas M
    Int J Neural Syst; 1999 Feb; 9(1):1-9. PubMed ID: 10401926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating Gaussian mixture model or radial basis function network with multilayer perceptron.
    Patrikar AM
    IEEE Trans Neural Netw Learn Syst; 2013 Jul; 24(7):1161-6. PubMed ID: 24808530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Network Classifiers Estimate Bayesian
    Richard MD; Lippmann RP
    Neural Comput; 1991; 3(4):461-483. PubMed ID: 31167331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer perceptron-based DFE with lattice structure.
    Zerguine A; Shafi A; Bettayeb M
    IEEE Trans Neural Netw; 2001; 12(3):532-45. PubMed ID: 18249886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep snoring detection using multi-layer neural networks.
    Nguyen TL; Won Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1749-55. PubMed ID: 26405943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis of multilayer perceptron to input and weight perturbations.
    Zeng X; Yeung DS
    IEEE Trans Neural Netw; 2001; 12(6):1358-66. PubMed ID: 18249965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds.
    Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ; Villanueva-Pareja A
    J Chem Inf Comput Sci; 2004; 44(3):1031-41. PubMed ID: 15154772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEG source localization using an MLP with a distributed output representation.
    Jun SC; Pearlmutter BA; Nolte G
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):786-9. PubMed ID: 12814246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analysis of multilayer perceptron with differentiable activation functions.
    Choi JY; Choi CH
    IEEE Trans Neural Netw; 1992; 3(1):101-7. PubMed ID: 18276410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantified sensitivity measure for multilayer perceptron to input perturbation.
    Zeng X; Yeung DS
    Neural Comput; 2003 Jan; 15(1):183-212. PubMed ID: 12590825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using function approximation to analyze the sensitivity of MLP with antisymmetric squashing activation function.
    Yeung DS; Sun X
    IEEE Trans Neural Netw; 2002; 13(1):34-44. PubMed ID: 18244407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural subnet design by direct polynomial mapping.
    Rohani K; Chen MS; Manry MT
    IEEE Trans Neural Netw; 1992; 3(6):1024-6. PubMed ID: 18276501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear QSAR modeling by using multilayer perceptron feedforward neural networks trained by back-propagation.
    González-Arjona D; López-Pérez G; Gustavo González A
    Talanta; 2002 Jan; 56(1):79-90. PubMed ID: 18968482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specification of training sets and the number of hidden neurons for multilayer perceptrons.
    Camargo LS; Yoneyama T
    Neural Comput; 2001 Dec; 13(12):2673-80. PubMed ID: 11705406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayer perceptron, fuzzy sets, and classification.
    Pal SK; Mitra S
    IEEE Trans Neural Netw; 1992; 3(5):683-97. PubMed ID: 18276468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.