These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18267790)

  • 1. Recurrent neural network training with feedforward complexity.
    Olurotimi O
    IEEE Trans Neural Netw; 1994; 5(2):185-97. PubMed ID: 18267790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks.
    Puskorius GV; Feldkamp LA
    IEEE Trans Neural Netw; 1994; 5(2):279-97. PubMed ID: 18267797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedforward Approximations to Dynamic Recurrent Network Architectures.
    Muir DR
    Neural Comput; 2018 Feb; 30(2):546-567. PubMed ID: 29162003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bounds of the incremental gain for discrete-time recurrent neural networks.
    Chu YC
    IEEE Trans Neural Netw; 2002; 13(5):1087-98. PubMed ID: 18244506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid linear/nonlinear training algorithm for feedforward neural networks.
    McLoone S; Brown MD; Irwin G; Lightbody A
    IEEE Trans Neural Netw; 1998; 9(4):669-84. PubMed ID: 18252490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth function approximation using neural networks.
    Ferrari S; Stengel RF
    IEEE Trans Neural Netw; 2005 Jan; 16(1):24-38. PubMed ID: 15732387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations.
    Karayiannis NB
    IEEE Trans Neural Netw; 1996; 7(2):419-26. PubMed ID: 18255595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear control structures based on embedded neural system models.
    Lightbody G; Irwin GW
    IEEE Trans Neural Netw; 1997; 8(3):553-67. PubMed ID: 18255659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.
    Jeng JT; Lee TT
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):85-92. PubMed ID: 18244731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Chebyshev-polynomials-based unified model neural networks for function approximation.
    Lee TT; Jeng JT
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(6):925-35. PubMed ID: 18256014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting general nonlinear programming problems into separable programming problems with feedforward neural networks.
    Lu BL; Ito K
    Neural Netw; 2003 Sep; 16(7):1059-74. PubMed ID: 14692639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural networks and chaos: construction, evaluation of chaotic networks, and prediction of chaos with multilayer feedforward networks.
    Bahi JM; Couchot JF; Guyeux C; Salomon M
    Chaos; 2012 Mar; 22(1):013122. PubMed ID: 22462998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning in the multiple class random neural network.
    Gelenbe E; Hussain KF
    IEEE Trans Neural Netw; 2002; 13(6):1257-67. PubMed ID: 18244525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal difference learning applied to sequential detection.
    Guo C; Kuh A
    IEEE Trans Neural Netw; 1997; 8(2):278-87. PubMed ID: 18255632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein secondary structure prediction with partially recurrent neural networks.
    Reczko M
    SAR QSAR Environ Res; 1993; 1(2-3):153-9. PubMed ID: 8790631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems.
    Chen T; Chen H
    IEEE Trans Neural Netw; 1995; 6(4):911-7. PubMed ID: 18263379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations.
    Pati YC; Krishnaprasad PS
    IEEE Trans Neural Netw; 1993; 4(1):73-85. PubMed ID: 18267705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of boundedness and convergence of online gradient method for two-layer feedforward neural networks.
    Lu Xu ; Jinshu Chen ; Defeng Huang ; Jianhua Lu ; Licai Fang
    IEEE Trans Neural Netw Learn Syst; 2013 Aug; 24(8):1327-38. PubMed ID: 24808571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of feedforward networks in supremum error bound.
    Ciesielski K; Sacha JP; Cios KJ
    IEEE Trans Neural Netw; 2000; 11(6):1213-27. PubMed ID: 18249848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent neuro-fuzzy networks for nonlinear process modeling.
    Zhang J; Morris AJ
    IEEE Trans Neural Netw; 1999; 10(2):313-26. PubMed ID: 18252529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.