These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18267842)

  • 1. Global analysis of Oja's flow for neural networks.
    Yan WY; Helmke U; Moore JB
    IEEE Trans Neural Netw; 1994; 5(5):674-83. PubMed ID: 18267842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global convergence of Oja's subspace algorithm for principal component extraction.
    Chen T; Hua Y; Yan WY
    IEEE Trans Neural Netw; 1998; 9(1):58-67. PubMed ID: 18252430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm.
    Yi Z; Ye M; Lv JC; Tan KK
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1318-28. PubMed ID: 16342477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymptotic distributions associated to Oja's learning equation for neural networks.
    Delmas JP; Cardos JF
    IEEE Trans Neural Netw; 1998; 9(6):1246-57. PubMed ID: 18255806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations.
    Karayiannis NB
    IEEE Trans Neural Netw; 1996; 7(2):419-26. PubMed ID: 18255595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulated Hebb-Oja learning rule--a method for principal subspace analysis.
    Jankovic MV; Ogawa H
    IEEE Trans Neural Netw; 2006 Mar; 17(2):345-56. PubMed ID: 16566463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust recursive least squares learning algorithm for principal component analysis.
    Shan O; Bao Z; Liao GS
    IEEE Trans Neural Netw; 2000; 11(1):215-21. PubMed ID: 18249753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursive principal components analysis.
    Voegtlin T
    Neural Netw; 2005 Oct; 18(8):1051-63. PubMed ID: 16181769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A geometric Newton method for Oja's vector field.
    Absil PA; Ishteva M; De Lathauwer L; Van Huffel S
    Neural Comput; 2009 May; 21(5):1415-33. PubMed ID: 19018707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified algorithm for principal and minor components extraction.
    Lin Q; Amari SI; Chen T
    Neural Netw; 1998 Apr; 11(3):385-390. PubMed ID: 12662816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Analysis and Comparison of Convergence and Uniqueness of Time-Independent Bone Adaptation Models.
    Wu W
    Comput Methods Biomech Biomed Engin; 1998; 1(3):223-232. PubMed ID: 11264805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global mapping analysis: stochastic approximation for multidimensional scaling.
    Matsuda Y; Yamaguchi K
    Int J Neural Syst; 2001 Oct; 11(5):419-26. PubMed ID: 11709809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature Extraction Using Memristor Networks.
    Sheridan PM; Du C; Lu WD
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2327-2336. PubMed ID: 26513807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear recursive distributed representations.
    Voegtlin T; Dominey PF
    Neural Netw; 2005 Sep; 18(7):878-95. PubMed ID: 15936173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exponential stability and periodic solutions of neural networks with continuously distributed delays.
    Guo S; Huang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):011902. PubMed ID: 12636527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organizing effects of spontaneous neural activity on the development of spinal locomotor circuits in vertebrates.
    van Heijst JJ; Vos JE
    Biol Cybern; 1997 Sep; 77(3):185-95. PubMed ID: 9352632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global exponential stability of neural networks with non-smooth and impact activations.
    Akhmet MU; Yılmaz E
    Neural Netw; 2012 Oct; 34():18-27. PubMed ID: 22789746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem.
    Liang XB; Si J
    IEEE Trans Neural Netw; 2001; 12(2):349-59. PubMed ID: 18244389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some sufficient conditions for global exponential stability of delayed Hopfield neural networks.
    Lu H; Chung FL; He Z
    Neural Netw; 2004 May; 17(4):537-44. PubMed ID: 15109682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Exponential Stability for Complex-Valued Recurrent Neural Networks With Asynchronous Time Delays.
    Liu X; Chen T
    IEEE Trans Neural Netw Learn Syst; 2016 Mar; 27(3):593-606. PubMed ID: 25872218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.