BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 18268004)

  • 1. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.
    Yamamoto T; Suzuki T; Kobayashi A; Wakabayashi J; Maher J; Motohashi H; Yamamoto M
    Mol Cell Biol; 2008 Apr; 28(8):2758-70. PubMed ID: 18268004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system.
    Takaya K; Suzuki T; Motohashi H; Onodera K; Satomi S; Kensler TW; Yamamoto M
    Free Radic Biol Med; 2012 Aug; 53(4):817-27. PubMed ID: 22732183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2.
    He X; Ma Q
    J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response.
    Saito R; Suzuki T; Hiramoto K; Asami S; Naganuma E; Suda H; Iso T; Yamamoto H; Morita M; Baird L; Furusawa Y; Negishi T; Ichinose M; Yamamoto M
    Mol Cell Biol; 2016 Jan; 36(2):271-84. PubMed ID: 26527616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species.
    Reisman SA; Yeager RL; Yamamoto M; Klaassen CD
    Toxicol Sci; 2009 Mar; 108(1):35-47. PubMed ID: 19129213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keap1 cysteine 288 as a potential target for diallyl trisulfide-induced Nrf2 activation.
    Kim S; Lee HG; Park SA; Kundu JK; Keum YS; Cha YN; Na HK; Surh YJ
    PLoS One; 2014; 9(1):e85984. PubMed ID: 24489685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish.
    Li L; Kobayashi M; Kaneko H; Nakajima-Takagi Y; Nakayama Y; Yamamoto M
    J Biol Chem; 2008 Feb; 283(6):3248-3255. PubMed ID: 18057000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation.
    He X; Ma Q
    Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1.
    Kobayashi A; Kang MI; Watai Y; Tong KI; Shibata T; Uchida K; Yamamoto M
    Mol Cell Biol; 2006 Jan; 26(1):221-9. PubMed ID: 16354693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Select heterozygous Keap1 mutations have a dominant-negative effect on wild-type Keap1 in vivo.
    Suzuki T; Maher J; Yamamoto M
    Cancer Res; 2011 Mar; 71(5):1700-9. PubMed ID: 21177379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keap1 degradation by autophagy for the maintenance of redox homeostasis.
    Taguchi K; Fujikawa N; Komatsu M; Ishii T; Unno M; Akaike T; Motohashi H; Yamamoto M
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13561-6. PubMed ID: 22872865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2 cell defense system.
    Copple IM; Goldring CE; Jenkins RE; Chia AJ; Randle LE; Hayes JD; Kitteringham NR; Park BK
    Hepatology; 2008 Oct; 48(4):1292-301. PubMed ID: 18785192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Point Mutation at C151 of
    Gatbonton-Schwager T; Yagishita Y; Joshi T; Wakabayashi N; Srinivasan H; Suzuki T; Yamamoto M; Kensler TW
    Mol Pharmacol; 2023 Aug; 104(2):51-61. PubMed ID: 37188495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains.
    Ogura T; Tong KI; Mio K; Maruyama Y; Kurokawa H; Sato C; Yamamoto M
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2842-7. PubMed ID: 20133743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.
    Dinkova-Kostova AT; Kostov RV; Canning P
    Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole.
    Abiko Y; Miura T; Phuc BH; Shinkai Y; Kumagai Y
    Toxicol Appl Pharmacol; 2011 Aug; 255(1):32-9. PubMed ID: 21651925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.