These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 18268025)

  • 1. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of the purine and SAM binding riboswitches.
    Gilbert SD; Montange RK; Stoddard CD; Batey RT
    Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-dependent folding and unfolding of ligand-bound purine riboswitches.
    Prychyna O; Dahabieh MS; Chao J; O'Neill MA
    Biopolymers; 2009 Nov; 91(11):953-65. PubMed ID: 19603494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purine sensing by riboswitches.
    Kim JN; Breaker RR
    Biol Cell; 2008 Jan; 100(1):1-11. PubMed ID: 18072940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity.
    Polaski JT; Kletzien OA; Drogalis LK; Batey RT
    Nucleic Acids Res; 2018 Sep; 46(17):9094-9105. PubMed ID: 29945209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem riboswitch architectures exhibit complex gene control functions.
    Sudarsan N; Hammond MC; Block KF; Welz R; Barrick JE; Roth A; Breaker RR
    Science; 2006 Oct; 314(5797):300-4. PubMed ID: 17038623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch.
    Stoddard CD; Widmann J; Trausch JJ; Marcano-Velázquez JG; Knight R; Batey RT
    J Mol Biol; 2013 May; 425(10):1596-611. PubMed ID: 23485418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboswitch structure: an internal residue mimicking the purine ligand.
    Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P
    Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis.
    Welz R; Breaker RR
    RNA; 2007 Apr; 13(4):573-82. PubMed ID: 17307816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.