These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 18268299)

  • 41. Atmospheric volatilization and distribution of (Z)- and (E)-1,3-dichloropropene in field beds with and without plastic covers.
    Thomas JE; Allen LH; McCormack LA; Vu JC; Dickson DW; Ou LT
    J Environ Sci Health B; 2004; 39(5-6):709-23. PubMed ID: 15620080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved soil fumigation by Telone C35 using carbonation.
    Thomas JE; Ou LT; Allen LH; Vu JC; Dickson DW
    J Environ Sci Health B; 2011; 46(8):655-61. PubMed ID: 21806461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Persistence, distribution, and emission of Telone C35 injected into a Florida sandy soil as affected by moisture, organic matter, and plastic film cover.
    Thomas JE; Ou LT; Allen LH; McCormack LA; Vu JC; Dickson DW
    J Environ Sci Health B; 2004 May; 39(4):505-16. PubMed ID: 15473633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting soil fumigant air concentrations under regional and diverse agronomic conditions.
    Cryer SA
    J Environ Qual; 2005; 34(6):2197-207. PubMed ID: 16275721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fumigation toxicity of volatile natural and synthetic cyanohydrins to stored-product pests and activity as soil fumigants.
    Park DS; Peterson C; Zhao S; Coats JR
    Pest Manag Sci; 2004 Aug; 60(8):833-8. PubMed ID: 15307677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of water seal on reducing 1,3-dichloropropene emissions from different soil textures.
    McDonald JA; Gao S; Qin R; Hanson BD; Trout TJ; Wang D
    J Environ Qual; 2009; 38(2):712-8. PubMed ID: 19244492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of organic material on field-scale emissions of 1,3-dichloropropene.
    Yates SR; Knuteson J; Zheng W; Wang Q
    J Environ Qual; 2011; 40(5):1470-9. PubMed ID: 21869509
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subsurface drip application of alternative fumigants to methyl bromide for controlling nematodes in replanted grapevines.
    Cabrera JA; Wang D; Schneider SM; Hanson BD
    Pest Manag Sci; 2012 May; 68(5):773-80. PubMed ID: 22102430
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soil chamber method for determination of drip-applied fumigant behavior in bed-furrow agriculture: application to chloropicrin.
    Ashworth DJ; Ernst FF; Yates SR
    Environ Sci Technol; 2008 Jun; 42(12):4434-9. PubMed ID: 18605567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 1,3-Dichloropropene and chloropicrin emission reduction using a flexible CuInS
    Yan L; Guo X; Rao P; Huang L; Sun M; Li L; Shen G
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6980-6989. PubMed ID: 33025439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of co-formulation of 1,3-dichloropropene and chloropicrin on evaporative emissions from soil.
    Ashworth DJ; Yates SR; Van Wesenbeeck IJ; Stanghellini M
    J Agric Food Chem; 2015 Jan; 63(2):415-21. PubMed ID: 25531174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transformation of chloropicrin and 1,3-dichloropropene by metam sodium in a combined application of fumigants.
    Zheng W; Yates SR; Guo M; Papiernik SK; Kim JH
    J Agric Food Chem; 2004 May; 52(10):3002-9. PubMed ID: 15137846
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of composted animal manures to reduce 1,3-dichloropropene emissions.
    Dungan RS; Papiernik S; Yates SR
    J Environ Sci Health B; 2005; 40(2):355-62. PubMed ID: 15825686
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.
    Yates SR; Knuteson J; Ernst FF; Zheng W; Wang Q
    Environ Sci Technol; 2008 Dec; 42(23):8753-8. PubMed ID: 19192793
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of surface treatments and application shanks on nematode, pathogen and weed control with 1,3-dichloropropene.
    Jhala AJ; Gao S; Gerik JS; Qin R; Hanson BD
    Pest Manag Sci; 2012 Feb; 68(2):225-30. PubMed ID: 21796757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution and leaching of methyl iodide in soil following emulated shank and drip application.
    Guo M; Zheng W; Papiernik SK; Yates SR
    J Environ Qual; 2004; 33(6):2149-56. PubMed ID: 15537937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of field methyl isothiocyanate flux following Pacific Northwest surface-applied and ground-incorporated fumigation practices.
    Littke MH; LePage J; Sullivan DA; Hebert VR
    Pest Manag Sci; 2013 May; 69(5):620-6. PubMed ID: 23074019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.
    van Wesenbeeck IJ; Cryer SA; de Cirugeda Helle O; Li C; Driver JH
    Sci Total Environ; 2016 Nov; 569-570():603-610. PubMed ID: 27376915
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part I. Model description and evaluation.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2006 Sep; 368(2-3):823-38. PubMed ID: 16678241
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analytical solution describing pesticide volatilization from soil affected by a change in surface condition.
    Yates SR
    J Environ Qual; 2009; 38(1):259-67. PubMed ID: 19141816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.