BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18268302)

  • 1. Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.).
    Rogers HH; Runion GB; Prior SA; Price AJ; Torbert HA; Gjerstad DH
    J Environ Qual; 2008; 37(2):395-400. PubMed ID: 18268302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the development of yellow nutsedge (Cyperus esculentus L.) with growth analysis.
    Buzsáki K; Lehoczky E; Béres I
    Commun Agric Appl Biol Sci; 2008; 73(4):971-4. PubMed ID: 19226851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spreading and germination of yellow nutsedge (Cyperus esculentus L.) in Hungary.
    Hoffmann ZP; Buzsáki K; Béres I
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):797-801. PubMed ID: 17390823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropical spiderwort (Commelina benghalensis L.) increases growth under elevated atmospheric carbon dioxide.
    Price AJ; Runion GB; Prior SA; Rogers HH; Torbert HA
    J Environ Qual; 2009; 38(2):729-33. PubMed ID: 19244494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment.
    Stanciel K; Mortley DG; Hileman DR; Loretan PA; Bonsi CK; Hill WA
    HortScience; 2000 Feb; 35(1):49-52. PubMed ID: 11725790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of yellow and purple nutsedge in elevated CO2 environments with glyphosate and halosulfuron.
    Marble SC; Prior SA; Runion GB; Torbert HA
    Front Plant Sci; 2015; 6():1. PubMed ID: 25653664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of Yellow Nutsedge (Cyperus esculentus) and Purple Nutsedge (C. rotundus) in Georgia Naturally Infected with Impatiens necrotic spot virus.
    Martínez-Ochoa N; Mullis SW; Csinos AS; Webster TM
    Plant Dis; 2004 Jul; 88(7):771. PubMed ID: 30812498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China.
    Zhang L; Yang Y; Zhan X; Zhang C; Zhou S; Wu D
    J Environ Qual; 2010; 39(1):251-9. PubMed ID: 20048313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth, CO2 exchange rate and dry matter partitioning in mungbean (Vigna radiata L.) grown under elevated CO2.
    Srivastava AC; Pal M; Das M; Sengupta UK
    Indian J Exp Biol; 2001 Jun; 39(6):572-7. PubMed ID: 12562021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyperus Tubers Protect Meloidogyne incognita from 1,3-Dichloropropene.
    Thomas SH; Schroeder J; Murray LW
    J Nematol; 2004 Jun; 36(2):131-6. PubMed ID: 19262797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A seed-like proteome in oil-rich tubers.
    Niemeyer PW; Irisarri I; Scholz P; Schmitt K; Valerius O; Braus GH; Herrfurth C; Feussner I; Sharma S; Carlsson AS; de Vries J; Hofvander P; Ischebeck T
    Plant J; 2022 Oct; 112(2):518-534. PubMed ID: 36050843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of elevated CO2 on clonal growth and nutrient content of submerge plant Vallisneria spinulosa.
    Yan X; Yu D; Li YK
    Chemosphere; 2006 Jan; 62(4):595-601. PubMed ID: 16083940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential cold tolerance, starch, sugar, protein, and lipid of yellow and purple nutsedge tubers.
    Stoller EW; Weber EJ
    Plant Physiol; 1975 May; 55(5):859-63. PubMed ID: 16659181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of Dactylaria higginsii on Purple Nutsedge in Florida.
    Kadir JB; Charudattan R
    Plant Dis; 1999 Jun; 83(6):588. PubMed ID: 30849842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of tropospheric ozone and elevated carbon dioxide on potato (Solanum tuberosum L. cv. Bintje) growth and yield.
    Persson K; Danielsson H; Selldén G; Pleijel H
    Sci Total Environ; 2003 Jul; 310(1-3):191-201. PubMed ID: 12812743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil.
    Millhollen AG; Obrist D; Gustin MS
    Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community.
    Runion GB; Davis MA; Pritchard SG; Prior SA; Mitchell RJ; Torbert HA; Rogers HH; Dute RR
    J Environ Qual; 2006; 35(4):1478-86. PubMed ID: 16825468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High oil accumulation in tuber of yellow nutsedge compared to purple nutsedge is associated with more abundant expression of genes involved in fatty acid synthesis and triacylglycerol storage.
    Ji H; Liu D; Yang Z
    Biotechnol Biofuels; 2021 Mar; 14(1):54. PubMed ID: 33653389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources.
    Eller AS; McGuire KL; Sparks JP
    Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs.
    Song N; Zhang X; Wang F; Zhang C; Tang S
    J Environ Radioact; 2012 Oct; 112():29-37. PubMed ID: 22507353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.