These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy. Wang Y; Zhao L; Hu Z; Wang Y; Zhao Z; Li L; Huang ZL Cytometry A; 2017 Dec; 91(12):1175-1183. PubMed ID: 29165899 [TBL] [Abstract][Full Text] [Related]
3. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD. Tiffenberg J; Sofo-Haro M; Drlica-Wagner A; Essig R; Guardincerri Y; Holland S; Volansky T; Yu TT Phys Rev Lett; 2017 Sep; 119(13):131802. PubMed ID: 29341716 [TBL] [Abstract][Full Text] [Related]
4. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device. Samant SS; Gopal A Med Phys; 2006 Aug; 33(8):2783-91. PubMed ID: 16964854 [TBL] [Abstract][Full Text] [Related]
5. Comparison of detection limits of direct-counting CMOS and CCD cameras in EELS experiments. Haruta M; Kikkawa J; Kimoto K; Kurata H Ultramicroscopy; 2022 Oct; 240():113577. PubMed ID: 35728341 [TBL] [Abstract][Full Text] [Related]
6. High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera. Dragojević T; Bronzi D; Varma HM; Valdes CP; Castellvi C; Villa F; Tosi A; Justicia C; Zappa F; Durduran T Biomed Opt Express; 2015 Aug; 6(8):2865-76. PubMed ID: 26309751 [TBL] [Abstract][Full Text] [Related]
7. Model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics. Zilpelwar S; Sie EJ; Postnov D; Chen AI; Zimmermann B; Marsili F; Boas DA; Cheng X Biomed Opt Express; 2022 Dec; 13(12):6533-6549. PubMed ID: 36589566 [TBL] [Abstract][Full Text] [Related]
8. Smart Readout of Nondestructive Image Sensors with Single Photon-Electron Sensitivity. Chierchie F; Moroni GF; Stefanazzi L; Paolini E; Tiffenberg J; Estrada J; Cancelo G; Uemura S Phys Rev Lett; 2021 Dec; 127(24):241101. PubMed ID: 34951780 [TBL] [Abstract][Full Text] [Related]
9. Camera technologies for low light imaging: overview and relative advantages. Moomaw B Methods Cell Biol; 2013; 114():243-83. PubMed ID: 23931510 [TBL] [Abstract][Full Text] [Related]
10. Low noise imaging photon counter for astronomy. Mertz L; Tarbell TD; Title A Appl Opt; 1982 Feb; 21(4):628-34. PubMed ID: 20372509 [TBL] [Abstract][Full Text] [Related]
11. Noise aliasing in interline-video-based fluoroscopy systems. Lai H; Cunningham A Med Phys; 2002 Mar; 29(3):298-310. PubMed ID: 11929012 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging. Teymurazyan A; Rowlands JA; Pang G Med Phys; 2014 Apr; 41(4):041907. PubMed ID: 24694138 [TBL] [Abstract][Full Text] [Related]
13. Characterizing and correcting camera noise in back-illuminated sCMOS cameras. Zhang Z; Wang Y; Piestun R; Huang ZL Opt Express; 2021 Mar; 29(5):6668-6690. PubMed ID: 33726183 [TBL] [Abstract][Full Text] [Related]
15. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution. Heemskerk JW; Westra AH; Linotte PM; Ligtvoet KM; Zbijewski W; Beekman FJ Phys Med Biol; 2007 Apr; 52(8):N149-62. PubMed ID: 17404450 [TBL] [Abstract][Full Text] [Related]
16. Photon-counting 3D integral imaging with less than a single photon per pixel on average using a statistical model of the EM-CCD camera. Hotaka H; O'Connor T; Ohsuka S; Javidi B Opt Lett; 2020 Apr; 45(8):2327-2330. PubMed ID: 32287225 [TBL] [Abstract][Full Text] [Related]