These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 18268653)
21. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance. Sato C; Shimada M; Tanikawa Y; Hoshi Y J Biomed Opt; 2013 Sep; 18(9):097005. PubMed ID: 24057194 [TBL] [Abstract][Full Text] [Related]
22. Influence of Lambertian surface scattering on the spatially resolved reflectance from turbid media: a computational study. Lindner B; Foschum F; Kienle A Appl Opt; 2022 Apr; 61(10):2775-2787. PubMed ID: 35471353 [TBL] [Abstract][Full Text] [Related]
23. Validity of a closed-form diffusion solution in P1 approximation for reflectance imaging with an oblique beam of arbitrary profile. Lu JQ; Chen C; Pravica DW; Brock RS; Hu XH Med Phys; 2008 Sep; 35(9):3979-87. PubMed ID: 18841849 [TBL] [Abstract][Full Text] [Related]
24. Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measurements. Martelli F; Del Bianco S; Zaccanti G Opt Lett; 2003 Jul; 28(14):1236-8. PubMed ID: 12885032 [TBL] [Abstract][Full Text] [Related]
25. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Liu Q; Ramanujam N Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693 [TBL] [Abstract][Full Text] [Related]
26. Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique. Cen H; Lu R Appl Opt; 2009 Oct; 48(29):5612-23. PubMed ID: 19823246 [TBL] [Abstract][Full Text] [Related]
27. Spatially resolved reflectance from turbid media having a rough surface. Part I: simulations. Lindner B; Foschum F; Kienle A Appl Opt; 2022 Oct; 61(28):8361-8370. PubMed ID: 36256149 [TBL] [Abstract][Full Text] [Related]
28. Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation. Kim AD; Hayakawa C; Venugopalan V Opt Lett; 2006 Apr; 31(8):1088-90. PubMed ID: 16625912 [TBL] [Abstract][Full Text] [Related]
29. Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths. Fawzi YS; Youssef AB; el-Batanony MH; Kadah YM Appl Opt; 2003 Nov; 42(31):6398-411. PubMed ID: 14649284 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media. Sharma D; Agrawal A; Matchette LS; Pfefer TJ Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274 [TBL] [Abstract][Full Text] [Related]
32. Reliable recovery of the optical properties of multi-layer turbid media by iteratively using a layered diffusion model at multiple source-detector separations. Liao YK; Tseng SH Biomed Opt Express; 2014 Mar; 5(3):975-89. PubMed ID: 24688828 [TBL] [Abstract][Full Text] [Related]
33. Optical measurements of absorption changes in two-layered diffusive media. Fabbri F; Sassaroli A; Henry ME; Fantini S Phys Med Biol; 2004 Apr; 49(7):1183-201. PubMed ID: 15128197 [TBL] [Abstract][Full Text] [Related]
34. Light propagation in dry and wet softwood. Kienle A; D'Andrea C; Foschum F; Taroni P; Pifferi A Opt Express; 2008 Jun; 16(13):9895-906. PubMed ID: 18575559 [TBL] [Abstract][Full Text] [Related]
35. Simple algorithm for the measurement of absorption coefficients of a two-layered medium by spatially resolved and time-resolved reflectance. Shimada M; Hoshi Y; Yamada Y Appl Opt; 2005 Dec; 44(35):7554-63. PubMed ID: 16363780 [TBL] [Abstract][Full Text] [Related]
36. Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network. Jäger M; Kienle A Phys Med Biol; 2011 Jun; 56(11):N139-44. PubMed ID: 21572234 [TBL] [Abstract][Full Text] [Related]
37. Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance. Pham TH; Spott T; Svaasand LO; Tromberg BJ Appl Opt; 2000 Sep; 39(25):4733-45. PubMed ID: 18350066 [TBL] [Abstract][Full Text] [Related]
38. Finite element simulation of light transfer in turbid media under structured illumination. Hu D; Lu R; Ying Y Appl Opt; 2017 Jul; 56(21):6035-6042. PubMed ID: 29047929 [TBL] [Abstract][Full Text] [Related]
39. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Pham TH; Bevilacqua F; Spott T; Dam JS; Tromberg BJ; Andersson-Engels S Appl Opt; 2000 Dec; 39(34):6487-97. PubMed ID: 18354662 [TBL] [Abstract][Full Text] [Related]
40. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media. Zhou Y; Fu X; Ying Y; Fang Z Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]