These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18268752)

  • 1. Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves.
    Krekov GM; Krekova MM; Shamanaev VS
    Appl Opt; 1998 Mar; 37(9):1589-95. PubMed ID: 18268752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Sensing of a Subsurface Oceanic Layer. II. Polarization Characteristics of Signals.
    Krekov GM; Krekova MM; Shamanaev VS
    Appl Opt; 1998 Mar; 37(9):1596-601. PubMed ID: 18268753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the air-water interface on hydrosol lidar operation.
    Kokhanenko GP; Krekova MM; Penner LE; Shamanaev VS
    Appl Opt; 2005 Jun; 44(17):3510-9. PubMed ID: 16007849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea.
    Liu H; Chen P; Mao Z; Pan D; He Y
    Opt Express; 2018 Oct; 26(22):29134-29147. PubMed ID: 30470080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne lidar detection of subsurface oceanic scattering layers.
    Hoge FE; Wright CW; Krabill WB; Buntzen RR; Gilbert GD; Swift RN; Yungel JK; Berry RE
    Appl Opt; 1988 Oct; 27(19):3969-77. PubMed ID: 20539503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airborne Doppler lidar investigation of the wind-modulated sea-surface angular retroreflectance signature.
    Tratt DM; Menzies RT; Chiao MP; Cutten DR; Rothermel J; Hardesty RM; Howell JN; Durden SL
    Appl Opt; 2002 Nov; 41(33):6941-9. PubMed ID: 12463238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical evaluation of the possibilities of remote laser sensing of fish schools.
    Krekova MM; Krekov GM; Samokhvalov IV; Shamanaev VS
    Appl Opt; 1994 Aug; 33(24):5715-20. PubMed ID: 20935973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing profiles of the volume scattering function at 180° using a single-photon oceanic fluorescence lidar.
    Shangguan M; Guo Y; Liao Z; Lee Z
    Opt Express; 2023 Nov; 31(24):40393-40410. PubMed ID: 38041342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.
    He M; Hu Y; Huang JP; Stamnes K
    Opt Express; 2016 Dec; 24(26):A1618-A1634. PubMed ID: 28059358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of laser-generated sea surface aureole.
    Hooper WP; Gerber H
    Appl Opt; 1988 Dec; 27(24):5111-8. PubMed ID: 20539704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fast Analysis Method for Blue-Green Laser Transmission through the Sea Surface.
    Dong L; Li N; Xie X; Bao C; Li X; Li D
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32235755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.
    Pal S; Lee TR; Phelps S; De Wekker SFJ
    Sci Total Environ; 2014 Oct; 496():424-434. PubMed ID: 25105753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing.
    Samoilova SV; Balin YS; Krekova MM; Winker DM
    Appl Opt; 2005 Jun; 44(17):3499-509. PubMed ID: 16007848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.
    Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ
    Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range.
    Shangguan M; Yang Z; Lin Z; Weng Z; Sun J
    Opt Lett; 2024 Feb; 49(3):626-629. PubMed ID: 38300075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization structure of lidar signals reflected from ice crystal clouds.
    Krekov GM; Krekova MM; Romashov DN; Shamanaev VS
    Appl Opt; 2005 Jul; 44(19):4148-56. PubMed ID: 16004064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of sea surface wave influence on small target detection with airborne laser depth sounding.
    Tulldahl HM; Steinvall KO
    Appl Opt; 2004 Apr; 43(12):2462-83. PubMed ID: 15119617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter.
    Hoge FE; Swift RN
    Appl Opt; 1983 Dec; 22(23):3778-86. PubMed ID: 18200263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple scattering from clear atmosphere obscured by transparent crystal clouds in satellite-borne lidar sensing.
    Flesia C; Starkov AV
    Appl Opt; 1996 May; 35(15):2637-41. PubMed ID: 21085409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrieval of cloud optical parameters from space-based backscatter lidar data.
    Balin YS; Samoilova SV; Krekova MM; Winker DM
    Appl Opt; 1999 Oct; 38(30):6365-73. PubMed ID: 18324166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.