These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18268753)

  • 1. Laser Sensing of a Subsurface Oceanic Layer. II. Polarization Characteristics of Signals.
    Krekov GM; Krekova MM; Shamanaev VS
    Appl Opt; 1998 Mar; 37(9):1596-601. PubMed ID: 18268753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves.
    Krekov GM; Krekova MM; Shamanaev VS
    Appl Opt; 1998 Mar; 37(9):1589-95. PubMed ID: 18268752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing.
    Samoilova SV; Balin YS; Krekova MM; Winker DM
    Appl Opt; 2005 Jun; 44(17):3499-509. PubMed ID: 16007848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea.
    Liu H; Chen P; Mao Z; Pan D; He Y
    Opt Express; 2018 Oct; 26(22):29134-29147. PubMed ID: 30470080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous sensing profiles of beam attenuation coefficient and volume scattering function at 180° using a single-photon underwater elastic-Raman lidar.
    Shangguan M; Liao Z; Guo Y
    Opt Express; 2024 Feb; 32(5):8189-8204. PubMed ID: 38439482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water Cloud Detection with Circular Polarization Lidar: A Semianalytic Monte Carlo Simulation Approach.
    Ahmad W; Zhang K; Tong Y; Xiao D; Wu L; Liu D
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne lidar detection of subsurface oceanic scattering layers.
    Hoge FE; Wright CW; Krabill WB; Buntzen RR; Gilbert GD; Swift RN; Yungel JK; Berry RE
    Appl Opt; 1988 Oct; 27(19):3969-77. PubMed ID: 20539503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.
    Wang Z; Mao J; Li J; Zhao H; Zhou C; Sheng H
    Appl Opt; 2017 Jul; 56(20):5620-5629. PubMed ID: 29047703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne polarized lidar detection of scattering layers in the ocean.
    Vasilkov AP; Goldin YA; Gureev BA; Hoge FE; Swift RN; Wright CW
    Appl Opt; 2001 Aug; 40(24):4353-64. PubMed ID: 18360476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the polarized Monte Carlo model of shipborne oceanic lidar returns.
    He H; Liu Q; Tang J; Zhu P; Chen S; Song X; Wu S
    Opt Express; 2023 Dec; 31(26):43250-43268. PubMed ID: 38178423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical evaluation of the possibilities of remote laser sensing of fish schools.
    Krekova MM; Krekov GM; Samokhvalov IV; Shamanaev VS
    Appl Opt; 1994 Aug; 33(24):5715-20. PubMed ID: 20935973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing profiles of the volume scattering function at 180° using a single-photon oceanic fluorescence lidar.
    Shangguan M; Guo Y; Liao Z; Lee Z
    Opt Express; 2023 Nov; 31(24):40393-40410. PubMed ID: 38041342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative retrieval method for ocean attenuation profiles measured by airborne lidar.
    Liu H; Chen P; Mao Z; Pan D
    Appl Opt; 2020 Apr; 59(10):C42-C51. PubMed ID: 32400564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater.
    Liu Q; Liu D; Bai J; Zhang Y; Zhou Y; Xu P; Liu Z; Chen S; Che H; Wu L; Shen Y; Liu C
    Opt Express; 2018 Nov; 26(23):30278-30291. PubMed ID: 30469903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote sensing oil in water with an all-fiber underwater single-photon Raman lidar.
    Shangguan M; Yang Z; Shangguan M; Lin Z; Liao Z; Guo Y; Liu C
    Appl Opt; 2023 Jul; 62(19):5301-5305. PubMed ID: 37707235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization structure of lidar signals reflected from ice crystal clouds.
    Krekov GM; Krekova MM; Romashov DN; Shamanaev VS
    Appl Opt; 2005 Jul; 44(19):4148-56. PubMed ID: 16004064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction technology of a polarization lidar with a complex optical system.
    Di H; Hua H; Cui Y; Hua D; Li B; Song Y
    J Opt Soc Am A Opt Image Sci Vis; 2016 Aug; 33(8):1488-94. PubMed ID: 27505646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.
    Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ
    Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the air-water interface on hydrosol lidar operation.
    Kokhanenko GP; Krekova MM; Penner LE; Shamanaev VS
    Appl Opt; 2005 Jun; 44(17):3510-9. PubMed ID: 16007849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.