BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 18268998)

  • 1. [Kinetics and equilibrium of Ni2+ biosorption by waste biomass of Saccharomyces cerevisia].
    Gao RY; Wang JL
    Huan Jing Ke Xue; 2007 Oct; 28(10):2315-9. PubMed ID: 18268998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characteristics of Ag+ biosorption by the waste biomass of Saccharomyces cerevisiae].
    Chen C; Wang JL
    Huan Jing Ke Xue; 2008 Nov; 29(11):3200-5. PubMed ID: 19186828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis.
    Ozer A; Gürbüz G; Calimli A; Körbahti BK
    J Hazard Mater; 2008 Apr; 152(2):778-88. PubMed ID: 17822840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode.
    Akar T; Kaynak Z; Ulusoy S; Yuvaci D; Ozsari G; Akar ST
    J Hazard Mater; 2009 Apr; 163(2-3):1134-41. PubMed ID: 18755542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace.
    Akar T; Tosun I; Kaynak Z; Ozkara E; Yeni O; Sahin EN; Akar ST
    J Hazard Mater; 2009 Jul; 166(2-3):1217-25. PubMed ID: 19153007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models.
    Chen Z; Ma W; Han M
    J Hazard Mater; 2008 Jun; 155(1-2):327-33. PubMed ID: 18178002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.
    Gupta VK; Rastogi A
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):170-8. PubMed ID: 18321684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and lead(II) ions removal of modified Punica granatum L. peels.
    Ay Ç; Özcan AS; Erdoğan Y; Özcan A
    Int J Phytoremediation; 2017 Apr; 19(4):327-339. PubMed ID: 27594142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study.
    Amini M; Younesi H; Bahramifar N
    Chemosphere; 2009 Jun; 75(11):1483-91. PubMed ID: 19285703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of biosorption process of acid orange 7 on waste brewery's yeast.
    Wu Y; Hu Y; Xie Z; Feng S; Li B; Mi X
    Appl Biochem Biotechnol; 2011 Apr; 163(7):882-94. PubMed ID: 20853160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil.
    Anjana K; Kaushik A; Kiran B; Nisha R
    J Hazard Mater; 2007 Sep; 148(1-2):383-6. PubMed ID: 17403568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of the Phaseolus vulgaris L. Waste biomass for decolorization of the textile dye Acid Red 57: determination of equilibrium, kinetic and thermodynamic parameters.
    Tunali S; Ozcan A; Kaynak Z; Ozcan AS; Akar T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Apr; 42(5):591-600. PubMed ID: 17454366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye.
    Akar T; Tosun I; Kaynak Z; Kavas E; Incirkus G; Akar ST
    J Hazard Mater; 2009 Nov; 171(1-3):865-71. PubMed ID: 19631464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling.
    Bayo J; Esteban G; Castillo J
    Environ Technol; 2012; 33(7-9):761-72. PubMed ID: 22720399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a chemically modified green macro alga as a biosorbent for phenol removal.
    Aravindhan R; Rao JR; Nair BU
    J Environ Manage; 2009 Apr; 90(5):1877-83. PubMed ID: 19138816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 May; 153(1-2):759-66. PubMed ID: 17942222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies for Ni(II) biosorption from industrial wastewater by Cassia fistula (Golden Shower) biomass.
    Hanif MA; Nadeem R; Zafar MN; Akhtar K; Bhatti HN
    J Hazard Mater; 2007 Jul; 145(3):501-5. PubMed ID: 17289258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of nickel(II) from aqueous solution by Vigna unguiculata (cowpea) pods biomass.
    Guyo U; Sibanda K; Sebata E; Chigondo F; Moyo M
    Water Sci Technol; 2016; 73(10):2301-10. PubMed ID: 27191550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters.
    Aksu Z; Balibek E
    J Hazard Mater; 2007 Jun; 145(1-2):210-20. PubMed ID: 17188810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.