These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 1826904)

  • 21. A nucleotide sequence in the translation start signal region is involved in heat shock-induced translation arrest in Escherichia coli.
    Kuriki Y
    FEBS Lett; 1990 May; 264(1):121-4. PubMed ID: 2186926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The htrM gene, whose product is essential for Escherichia coli viability only at elevated temperatures, is identical to the rfaD gene.
    Raina S; Georgopoulos C
    Nucleic Acids Res; 1991 Jul; 19(14):3811-9. PubMed ID: 1861974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli.
    Allen SP; Polazzi JO; Gierse JK; Easton AM
    J Bacteriol; 1992 Nov; 174(21):6938-47. PubMed ID: 1356969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding a heat shock protein.
    Lipinska B; King J; Ang D; Georgopoulos C
    Nucleic Acids Res; 1988 Aug; 16(15):7545-62. PubMed ID: 3045760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.
    Wu B; Georgopoulos C; Ang D
    J Bacteriol; 1992 Aug; 174(16):5258-64. PubMed ID: 1644751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of the htpX gene of Xylella fastidiosa and its expression in E. coli.
    Coltri PP; Rosato YB
    Curr Microbiol; 2004 Jun; 48(6):391-5. PubMed ID: 15170231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhizobium meliloti suhR suppresses the phenotype of an Escherichia coli RNA polymerase sigma 32 mutant.
    Bent AF; Signer ER
    J Bacteriol; 1990 Jul; 172(7):3559-68. PubMed ID: 2113906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new Escherichia coli heat shock gene, htrC, whose product is essential for viability only at high temperatures.
    Raina S; Georgopoulos C
    J Bacteriol; 1990 Jun; 172(6):3417-26. PubMed ID: 2160943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reexamining transcriptional regulation of the Bacillus subtilis htpX gene and the ykrK gene, encoding a novel type of transcriptional regulator, and redefining the YkrK operator.
    Lin TH; Huang SC; Shaw GC
    J Bacteriol; 2012 Dec; 194(24):6758-65. PubMed ID: 23042994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli.
    Tobe T; Ito K; Yura T
    Mol Gen Genet; 1984; 195(1-2):10-6. PubMed ID: 6092838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of rpoH (htpR) mutations of Escherichia coli: heat shock response in suhA revertants.
    Tobe T; Kusukawa N; Yura T
    J Bacteriol; 1987 Sep; 169(9):4128-34. PubMed ID: 3305481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequencing, mutational analysis, and transcriptional regulation of the Escherichia coli htrB gene.
    Karow M; Georgopoulos C
    Mol Microbiol; 1991 Sep; 5(9):2285-92. PubMed ID: 1840644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.
    Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T
    J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organization and transcription of the principal sigma gene (rpoDA) of Pseudomonas aeruginosa PAO1: involvement of a sigma 32-like RNA polymerase in rpoDA gene expression.
    Fujita M; Tanaka K; Takahashi H; Amemura A
    J Bacteriol; 1993 Feb; 175(4):1069-74. PubMed ID: 8432700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681.
    Schmidt G; Hertel C; Hammes WP
    Syst Appl Microbiol; 1999 Sep; 22(3):321-8. PubMed ID: 10553284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli.
    Dartigalongue C; Raina S
    EMBO J; 1998 Jul; 17(14):3968-80. PubMed ID: 9670013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.