BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18269190)

  • 1. Angiotensin-induced hypoxia in the kidney: functional and structural changes of the renal circulation.
    Nangaku M; Inagi R; Miyata T; Fujita T
    Adv Exp Med Biol; 2007; 618():85-99. PubMed ID: 18269190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the renin-angiotensin system and chronic hypoxia of the kidney.
    Nangaku M; Fujita T
    Hypertens Res; 2008 Feb; 31(2):175-84. PubMed ID: 18360035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
    Nangaku M
    J Am Soc Nephrol; 2006 Jan; 17(1):17-25. PubMed ID: 16291837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
    Nangaku M
    Nephron Exp Nephrol; 2004; 98(1):e8-12. PubMed ID: 15361693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of hypoxia in the pathogenesis of renal disease.
    Eckardt KU; Rosenberger C; Jürgensen JS; Wiesener MS
    Blood Purif; 2003; 21(3):253-7. PubMed ID: 12784052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of tubular hypoxia in the early phase in the remnant kidney model.
    Manotham K; Tanaka T; Matsumoto M; Ohse T; Miyata T; Inagi R; Kurokawa K; Fujita T; Nangaku M
    J Am Soc Nephrol; 2004 May; 15(5):1277-88. PubMed ID: 15100368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model.
    Tanaka T; Kojima I; Ohse T; Ingelfinger JR; Adler S; Fujita T; Nangaku M
    Lab Invest; 2005 Oct; 85(10):1292-307. PubMed ID: 16127428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrarenal oxygenation in chronic renal failure.
    Norman JT; Fine LG
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):989-96. PubMed ID: 17002678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular responses to hypoxia after renal segmental infarction.
    Rosenberger C; Griethe W; Gruber G; Wiesener M; Frei U; Bachmann S; Eckardt KU
    Kidney Int; 2003 Sep; 64(3):874-86. PubMed ID: 12911537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics.
    Fine LG; Norman JT
    Kidney Int; 2008 Oct; 74(7):867-72. PubMed ID: 18633339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective role of hypoxia-inducible factor-2alpha against ischemic damage and oxidative stress in the kidney.
    Kojima I; Tanaka T; Inagi R; Kato H; Yamashita T; Sakiyama A; Ohneda O; Takeda N; Sata M; Miyata T; Fujita T; Nangaku M
    J Am Soc Nephrol; 2007 Apr; 18(4):1218-26. PubMed ID: 17344427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure.
    Nangaku M
    Intern Med; 2004 Jan; 43(1):9-17. PubMed ID: 14964574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic link between renal ischemia and fibrosis.
    Tanaka T
    Med Mol Morphol; 2017 Mar; 50(1):1-8. PubMed ID: 27438710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis.
    Matsumoto M; Tanaka T; Yamamoto T; Noiri E; Miyata T; Inagi R; Fujita T; Nangaku M
    J Am Soc Nephrol; 2004 Jun; 15(6):1574-81. PubMed ID: 15153568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage.
    Basile DP; Donohoe DL; Roethe K; Mattson DL
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F338-48. PubMed ID: 12388385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
    Evans RG; Gardiner BS; Smith DW; O'Connor PM
    Am J Physiol Renal Physiol; 2008 Nov; 295(5):F1259-70. PubMed ID: 18550645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.
    Thomas JL; Pham H; Li Y; Hall E; Perkins GA; Ali SS; Patel HH; Singh P
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F282-F290. PubMed ID: 28331062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel therapeutic approach targeting the HIF-HRE system in the kidney.
    Nangaku M
    Adv Exp Med Biol; 2009; 645():81-6. PubMed ID: 19227454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of chronic hypoxia and hypoxia inducible factor in kidney disease.
    Nangaku M; Nishi H; Miyata T
    Chin Med J (Engl); 2008 Feb; 121(3):257-64. PubMed ID: 18298921
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of hypoxia in progressive chronic kidney disease and implications for therapy.
    Shoji K; Tanaka T; Nangaku M
    Curr Opin Nephrol Hypertens; 2014 Mar; 23(2):161-8. PubMed ID: 24378776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.