BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 18269633)

  • 1. Tracing the slow growth of anaerobic methane-oxidizing communities by (15)N-labelling techniques.
    Krüger M; Wolters H; Gehre M; Joye SB; Richnow HH
    FEMS Microbiol Ecol; 2008 Mar; 63(3):401-11. PubMed ID: 18269633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
    Meulepas RJ; Jagersma CG; Gieteling J; Buisman CJ; Stams AJ; Lens PN
    Biotechnol Bioeng; 2009 Oct; 104(3):458-70. PubMed ID: 19544305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane.
    Deusner C; Meyer V; Ferdelman TG
    Biotechnol Bioeng; 2010 Feb; 105(3):524-33. PubMed ID: 19787639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
    Dekas AE; Poretsky RS; Orphan VJ
    Science; 2009 Oct; 326(5951):422-6. PubMed ID: 19833965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
    Nauhaus K; Treude T; Boetius A; Krüger M
    Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.
    Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ
    Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl sulfides as intermediates in the anaerobic oxidation of methane.
    Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH
    Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS.
    Orphan VJ; Turk KA; Green AM; House CH
    Environ Microbiol; 2009 Jul; 11(7):1777-91. PubMed ID: 19383036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microbial consortium couples anaerobic methane oxidation to denitrification.
    Raghoebarsing AA; Pol A; van de Pas-Schoonen KT; Smolders AJ; Ettwig KF; Rijpstra WI; Schouten S; Damsté JS; Op den Camp HJ; Jetten MS; Strous M
    Nature; 2006 Apr; 440(7086):918-21. PubMed ID: 16612380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.
    Niemann H; Lösekann T; de Beer D; Elvert M; Nadalig T; Knittel K; Amann R; Sauter EJ; Schlüter M; Klages M; Foucher JP; Boetius A
    Nature; 2006 Oct; 443(7113):854-8. PubMed ID: 17051217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors.
    Sousa DZ; Pereira MA; Smidt H; Stams AJ; Alves MM
    FEMS Microbiol Ecol; 2007 May; 60(2):252-65. PubMed ID: 17374128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea.
    Shima S; Thauer RK
    Curr Opin Microbiol; 2005 Dec; 8(6):643-8. PubMed ID: 16242993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A marine microbial consortium apparently mediating anaerobic oxidation of methane.
    Boetius A; Ravenschlag K; Schubert CJ; Rickert D; Widdel F; Gieseke A; Amann R; Jørgensen BB; Witte U; Pfannkuche O
    Nature; 2000 Oct; 407(6804):623-6. PubMed ID: 11034209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
    Michaelis W; Seifert R; Nauhaus K; Treude T; Thiel V; Blumenberg M; Knittel K; Gieseke A; Peterknecht K; Pape T; Boetius A; Amann R; Jørgensen BB; Widdel F; Peckmann J; Pimenov NV; Gulin MB
    Science; 2002 Aug; 297(5583):1013-5. PubMed ID: 12169733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor.
    Girguis PR; Cozen AE; DeLong EF
    Appl Environ Microbiol; 2005 Jul; 71(7):3725-33. PubMed ID: 16000782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiology. Fantastic fixers.
    Fulweiler RW
    Science; 2009 Oct; 326(5951):377-8. PubMed ID: 19833949
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.