BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18269699)

  • 1. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering.
    Jagalur M; Pal C; Learned-Miller E; Zoeller RT; Kulp D
    BMC Bioinformatics; 2007; 8 Suppl 10(Suppl 10):S5. PubMed ID: 18269699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning based method for large-scale classification, registration, and clustering of in-situ hybridization experiments in the mouse olfactory bulb.
    Andonian A; Paseltiner D; Gould TJ; Castro JB
    J Neurosci Methods; 2019 Jan; 312():162-168. PubMed ID: 30529409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FuncISH: learning a functional representation of neural ISH images.
    Liscovitch N; Shalit U; Chechik G
    Bioinformatics; 2013 Jul; 29(13):i36-43. PubMed ID: 23813005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic image analysis for gene expression patterns of fly embryos.
    Peng H; Long F; Zhou J; Leung G; Eisen MB; Myers EW
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S7. PubMed ID: 17634097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory pathway analysis by high-throughput in situ hybridization.
    Visel A; Carson J; Oldekamp J; Warnecke M; Jakubcakova V; Zhou X; Shaw CA; Alvarez-Bolado G; Eichele G
    PLoS Genet; 2007 Oct; 3(10):1867-83. PubMed ID: 17953485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data.
    Costa IG; Krause R; Opitz L; Schliep A
    BMC Bioinformatics; 2007; 8 Suppl 10(Suppl 10):S3. PubMed ID: 18269697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPEX2: automated concise extraction of spatial gene expression patterns from Fly embryo ISH images.
    Puniyani K; Faloutsos C; Xing EP
    Bioinformatics; 2010 Jun; 26(12):i47-56. PubMed ID: 20529936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy.
    Bohland JW; Bokil H; Pathak SD; Lee CK; Ng L; Lau C; Kuan C; Hawrylycz M; Mitra PP
    Methods; 2010 Feb; 50(2):105-12. PubMed ID: 19733241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.
    Zeng T; Li R; Mukkamala R; Ye J; Ji S
    BMC Bioinformatics; 2015 May; 16():147. PubMed ID: 25948335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anatomic gene expression atlas of the adult mouse brain.
    Ng L; Bernard A; Lau C; Overly CC; Dong HW; Kuan C; Pathak S; Sunkin SM; Dang C; Bohland JW; Bokil H; Mitra PP; Puelles L; Hohmann J; Anderson DJ; Lein ES; Jones AR; Hawrylycz M
    Nat Neurosci; 2009 Mar; 12(3):356-62. PubMed ID: 19219037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of gene expression in embryonic structures of Drosophila melanogaster.
    Samsonova AA; Niranjan M; Russell S; Brazma A
    PLoS Comput Biol; 2007 Jul; 3(7):e144. PubMed ID: 17658945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-level and group-level models for Drosophila gene expression pattern annotation.
    Sun Q; Muckatira S; Yuan L; Ji S; Newfeld S; Kumar S; Ye J
    BMC Bioinformatics; 2013 Dec; 14():350. PubMed ID: 24299119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic determination of patterns of gene expression during Drosophila embryogenesis.
    Tomancak P; Beaton A; Weiszmann R; Kwan E; Shu S; Lewis SE; Richards S; Ashburner M; Hartenstein V; Celniker SE; Rubin GM
    Genome Biol; 2002; 3(12):RESEARCH0088. PubMed ID: 12537577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data.
    Hawrylycz M; Bernard A; Lau C; Sunkin SM; Chakravarty MM; Lein ES; Jones AR; Ng L
    Methods; 2010 Feb; 50(2):113-21. PubMed ID: 19800006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas.
    Liu Z; Yan SF; Walker JR; Zwingman TA; Jiang T; Li J; Zhou Y
    BMC Syst Biol; 2007 Apr; 1():19. PubMed ID: 17437647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated pipeline for atlas-based annotation of gene expression patterns: application to postnatal day 7 mouse brain.
    Carson J; Ju T; Bello M; Thaller C; Warren J; Kakadiaris IA; Chiu W; Eichele G
    Methods; 2010 Feb; 50(2):85-95. PubMed ID: 19698790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GINI: from ISH images to gene interaction networks.
    Puniyani K; Xing EP
    PLoS Comput Biol; 2013; 9(10):e1003227. PubMed ID: 24130465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allen mouse brain atlases reveal different neural connection and gene expression patterns in cerebellum gyri and sulci.
    Zeng T; Chen H; Fakhry A; Hu X; Liu T; Ji S
    Brain Struct Funct; 2015 Sep; 220(5):2691-703. PubMed ID: 24969129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdivision meshes for organizing spatial biomedical data.
    Ju T; Carson J; Liu L; Warren J; Bello M; Kakadiaris I
    Methods; 2010 Feb; 50(2):70-6. PubMed ID: 19664714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated identification of cell-type-specific genes in the mouse brain by image computing of expression patterns.
    Li R; Zhang W; Ji S
    BMC Bioinformatics; 2014 Jun; 15():209. PubMed ID: 24947138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.