BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 18269977)

  • 1. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and identification of an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):504-9. PubMed ID: 21245795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device.
    Shi Y; Korakianitis T
    Artif Organs; 2006 Dec; 30(12):929-48. PubMed ID: 17181834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of cardiovascular dynamics with different types of VAD assistance.
    Shi Y; Korakianitis T; Bowles C
    J Biomech; 2007; 40(13):2919-33. PubMed ID: 17433816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients.
    Di Molfetta A; Ferrari G; Iacobelli R; Filippelli S; Fresiello L; Guccione P; Toscano A; Amodeo A
    Artif Organs; 2017 Mar; 41(3):242-252. PubMed ID: 28281287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an implantable undulation type ventricular assist device for control of organ circulation.
    Yambe T; Abe Y; Imachi K; Shiraishi Y; Shibata M; Yamaguchi T; Wang Q; Duan X; Liu H; Yoshizawa M; Tanaka A; Matsuki H; Sato F; Haga Y; Esashi M; Tabayashi K; Mitamura Y; Sasada H; Umezu M; Matsuda T; Nitta S
    Artif Organs; 2004 Oct; 28(10):940-4. PubMed ID: 15385002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical application of BVS5000 left ventricular assist device in heart failure patients.
    Luo XJ; Hu SS; Sun HS; Xu JP; Liu P; Zheng Z; Ma WG; Zhang Y
    Chin Med J (Engl); 2008 May; 121(10):877-80. PubMed ID: 18706199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dilated cardiomyopathy and a left ventricular assist device on vortex dynamics in the left ventricle.
    Loerakker S; Cox LG; van Heijst GJ; de Mol BA; van de Vosse FN
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):649-60. PubMed ID: 18979303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption.
    Drzewiecki GM; Pilla JJ; Welkowitz W
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans-hepatic cannulation: a novel approach for placement of a pediatric percutaneous ventricular assist device.
    Gossett JG; Wang DH; Smith DE; Devaney EJ; Lloyd TR
    ASAIO J; 2006; 52(5):517-21. PubMed ID: 16966849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.