These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 18270005)

  • 1. A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential.
    Moulin C; Glière A; Barbier D; Joucla S; Yvert B; Mailley P; Guillemaud R
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):683-92. PubMed ID: 18270005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new 3D finite element model of extracellular action potentials recording with a microelectrode in a tissue slice.
    Moulin C; Glière A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():603-6. PubMed ID: 17946407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):501-9. PubMed ID: 12723062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1591-9. PubMed ID: 12549741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1580-90. PubMed ID: 12549740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data.
    Martinoia S; Massobrio P; Bove M; Massobrio G
    IEEE Trans Biomed Eng; 2004 May; 51(5):859-64. PubMed ID: 15132514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based analysis of cortical recording with silicon microelectrodes.
    Moffitt MA; McIntyre CC
    Clin Neurophysiol; 2005 Sep; 116(9):2240-50. PubMed ID: 16055377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the first amplifier stage in MEA systems on extracellular signal shapes.
    Wrobel G; Zhang Y; Krause HJ; Wolters N; Sommerhage F; Offenhäusser A; Ingebrandt S
    Biosens Bioelectron; 2007 Jan; 22(6):1092-6. PubMed ID: 16713242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based source localization of extracellular action potentials.
    Somogyvári Z; Zalányi L; Ulbert I; Erdi P
    J Neurosci Methods; 2005 Sep; 147(2):126-37. PubMed ID: 15913782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode.
    Yoo PB; Durand DM
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1461-9. PubMed ID: 16119242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays.
    Du J; Riedel-Kruse IH; Nawroth JC; Roukes ML; Laurent G; Masmanidis SC
    J Neurophysiol; 2009 Mar; 101(3):1671-8. PubMed ID: 19091921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volume conduction in an anatomically based surface EMG model.
    Lowery MM; Stoykov NS; Dewald JP; Kuiken TA
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2138-47. PubMed ID: 15605861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array.
    Jaber FT; Labeed FH; Hughes MP
    J Neurosci Methods; 2009 Sep; 182(2):225-35. PubMed ID: 19540265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the origin of the extracellular action potential waveform: A modeling study.
    Gold C; Henze DA; Koch C; Buzsáki G
    J Neurophysiol; 2006 May; 95(5):3113-28. PubMed ID: 16467426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the neuron-microtransducer junction: from extracellular to patch recording.
    Grattarola M; Martinoia S
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):35-41. PubMed ID: 8468074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.