BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18270017)

  • 1. Manufacture of Passive Dynamic ankle-foot orthoses using selective laser sintering.
    Faustini MC; Neptune RR; Crawford RH; Stanhope SJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):784-90. PubMed ID: 18270017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance.
    Harper NG; Russell EM; Wilken JM; Neptune RR
    J Biomech Eng; 2014 Sep; 136(9):091001. PubMed ID: 24870600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot.
    Creylman V; Muraru L; Pallari J; Vertommen H; Peeraer L
    Prosthet Orthot Int; 2013 Apr; 37(2):132-8. PubMed ID: 22833516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele.
    Wolf SI; Alimusaj M; Rettig O; Döderlein L
    Gait Posture; 2008 Jul; 28(1):175-7. PubMed ID: 18255293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for evaluating ankle foot orthosis characteristics: BRUCE.
    Bregman DJ; Rozumalski A; Koops D; de Groot V; Schwartz M; Harlaar J
    Gait Posture; 2009 Aug; 30(2):144-9. PubMed ID: 19520576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacture of energy storage and return prosthetic feet using selective laser sintering.
    South BJ; Fey NP; Bosker G; Neptune RR
    J Biomech Eng; 2010 Jan; 132(1):015001. PubMed ID: 20524754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling neuromuscular effects of ankle foot orthoses (AFOs) in computer simulations of gait.
    Crabtree CA; Higginson JS
    Gait Posture; 2009 Jan; 29(1):65-70. PubMed ID: 18657977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of stiffness reduction in varying curvature ankle foot orthoses.
    Braund M; Kroontje D; Brooks J; Self B; Aaron G; Bearden K
    Biomed Sci Instrum; 2005; 41():19-24. PubMed ID: 15850076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.
    Schrank ES; Hitch L; Wallace K; Moore R; Stanhope SJ
    J Biomech Eng; 2013 Oct; 135(10):101011-7. PubMed ID: 23774786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.
    Desloovere K; Molenaers G; Van Gestel L; Huenaerts C; Van Campenhout A; Callewaert B; Van de Walle P; Seyler J
    Gait Posture; 2006 Oct; 24(2):142-51. PubMed ID: 16934470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive-dynamic ankle-foot orthoses substitute for ankle strength while causing adaptive gait strategies: a feasibility study.
    Arch ES; Stanhope SJ
    Ann Biomed Eng; 2015 Feb; 43(2):442-50. PubMed ID: 25023660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework.
    Schrank ES; Stanhope SJ
    J Rehabil Res Dev; 2011; 48(1):31-42. PubMed ID: 21328161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinematic and kinetic effects of solid, hinged, and no ankle-foot orthoses on stair locomotion in healthy adults.
    Radtka SA; Oliveira GB; Lindstrom KE; Borders MD
    Gait Posture; 2006 Oct; 24(2):211-8. PubMed ID: 16260141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG; Esposito ER; Wilken JM; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):877-84. PubMed ID: 25193884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress distribution in the ankle-foot orthosis used to correct pathological gait.
    Chu TM; Reddy NP
    J Rehabil Res Dev; 1995 Nov; 32(4):349-60. PubMed ID: 8770799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness.
    Ramsey JA
    Prosthet Orthot Int; 2011 Mar; 35(1):54-69. PubMed ID: 21515890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy.
    Radtka SA; Skinner SR; Johanson ME
    Gait Posture; 2005 Apr; 21(3):303-10. PubMed ID: 15760746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ankle-foot orthoses on ankle and foot kinematics in patient with ankle osteoarthritis.
    Huang YC; Harbst K; Kotajarvi B; Hansen D; Koff MF; Kitaoka HB; Kaufman KR
    Arch Phys Med Rehabil; 2006 May; 87(5):710-6. PubMed ID: 16635635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design principles, manufacturing and evaluation techniques of custom dynamic ankle-foot orthoses: a review study.
    Rogati G; Caravaggi P; Leardini A
    J Foot Ankle Res; 2022 May; 15(1):38. PubMed ID: 35585544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.
    Blaya JA; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):24-31. PubMed ID: 15068184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.