These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18270029)

  • 1. 3-D modeling of the thermal coagulation necrosis induced by an interstitial ultrasonic transducer.
    Garnier C; Lafon C; Dillenseger JL
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 2):833-7. PubMed ID: 18270029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical modeling study of the necrotic field during high-intensity focused ultrasound surgery.
    Dong M; Wan BK; Zhang LX; Yong H
    Med Sci Monit; 2004 Feb; 10(2):MT19-23. PubMed ID: 14737051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the shape of ultrasound transducers for interstitial thermal ablation.
    Lafon C; de L; Theillère Y; Prat F; Chapelon JY; Cathignol D
    Med Phys; 2002 Mar; 29(3):290-7. PubMed ID: 11929011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia.
    Lin WL; Fan WC; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Mar; 46(5):1329-36. PubMed ID: 10725647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intradiscal thermal therapy using interstitial ultrasound: an in vivo investigation in ovine cervical spine.
    Nau WH; Diederich CJ; Shu R; Kinsey A; Bass E; Lotz J; Hu S; Simko J; Ferrier W; Sutton J; Attawia M; Pellegrino R
    Spine (Phila Pa 1976); 2007 Mar; 32(5):503-11. PubMed ID: 17334283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study.
    Diederich CJ; Hynynen K
    Med Phys; 1990; 17(4):626-34. PubMed ID: 2215407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal configuration of multiple-focused ultrasound transducers for external hyperthermia.
    Lin WL; Chen YY; Lin SY; Yen JY; Shieh MJ; Kuo TS
    Med Phys; 1999 Sep; 26(9):2007-16. PubMed ID: 10505892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and in vitro results of a high intensity ultrasound interstitial applicator.
    Lafon C; Chapelon JY; Prat F; Gorry F; Theillère Y; Cathignol D
    Ultrasonics; 1998 Feb; 36(1-5):683-7. PubMed ID: 9651597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature superposition for fast computation of 3D temperature distributions during optimization and planning of interstitial ultrasound hyperthermia treatments.
    Salgaonkar VA; Prakash P; Diederich CJ
    Int J Hyperthermia; 2012; 28(3):235-49. PubMed ID: 22515345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-mode transducers for ultrasound imaging and thermal therapy.
    Owen NR; Chapelon JY; Bouchoux G; Berriet R; Fleury G; Lafon C
    Ultrasonics; 2010 Feb; 50(2):216-20. PubMed ID: 19758673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing cross-fire applicator for ultrasonic hyperthermia of tumors.
    Lierke EG; Hemsel T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e341-4. PubMed ID: 16930663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Percutaneous radiofrequency thermal ablation for liver tumours.
    Jiao LR
    Lancet; 1999 Jul; 354(9176):427-8. PubMed ID: 10437901
    [No Abstract]   [Full Text] [Related]  

  • 15. An ultrasound system for local hyperthermia using scanned focused transducers.
    Dickinson RJ
    IEEE Trans Biomed Eng; 1984 Jan; 31(1):120-5. PubMed ID: 6724599
    [No Abstract]   [Full Text] [Related]  

  • 16. Phase estimation for a phased array therapeutic interstitial ultrasound probe.
    Yang Z; Dillenseger JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():472-5. PubMed ID: 23365931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array.
    Daum DR; Smith NB; King R; Hynynen K
    Ultrasound Med Biol; 1999 Sep; 25(7):1087-98. PubMed ID: 10574341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of split-focus approach on producing larger coagulation in swine liver.
    Sasaki K; Azuma T; Kawabata KI; Shimoda M; Kokue EI; Umemura SI
    Ultrasound Med Biol; 2003 Apr; 29(4):591-9. PubMed ID: 12749929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 64-element intraluminal ultrasound cylindrical phased array for transesophageal thermal ablation under fast MR temperature mapping: an ex vivo study.
    Melodelima D; Salomir R; Mougenot C; Moonen C; Cathignol D
    Med Phys; 2006 Aug; 33(8):2926-34. PubMed ID: 16964871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.