These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18270033)

  • 1. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions.
    Ermes M; Pärkka J; Mantyjarvi J; Korhonen I
    IEEE Trans Inf Technol Biomed; 2008 Jan; 12(1):20-6. PubMed ID: 18270033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squatting, sitting on the floor, or cycling: are life-long daily activities risk factors for clinical knee osteoarthritis? Stage III results of a community-based study.
    Dahaghin S; Tehrani-Banihashemi SA; Faezi ST; Jamshidi AR; Davatchi F
    Arthritis Rheum; 2009 Oct; 61(10):1337-42. PubMed ID: 19790110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.
    Pärkkä J; Cluitmans L; Ermes M
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1211-5. PubMed ID: 20813625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing supervised learning techniques on the task of physical activity recognition.
    Dalton A; OLaighin G
    IEEE J Biomed Health Inform; 2013 Jan; 17(1):46-52. PubMed ID: 23070357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOPET: a context-aware and user-adaptive wearable system for fitness training.
    Buttussi F; Chittaro L
    Artif Intell Med; 2008 Feb; 42(2):153-63. PubMed ID: 18234481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of novel techniques to classify physical activity mode using accelerometers.
    Pober DM; Staudenmayer J; Raphael C; Freedson PS
    Med Sci Sports Exerc; 2006 Sep; 38(9):1626-34. PubMed ID: 16960524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hand-cycling: an active form of wheeled mobility, recreation, and sports.
    Hettinga FJ; Valent L; Groen W; van Drongelen S; de Groot S; van der Woude LH
    Phys Med Rehabil Clin N Am; 2010 Feb; 21(1):127-40. PubMed ID: 19951782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Survey on sports practice and physical activity of primary school children living in the area of Bologna Local Health Unit in relation with some individual and environmental variables].
    Leoni E; Beltrami P; Poletti G; Baldi E; Sacchetti R; Garulli A; Masotti A; Bianco L; Ventura FA; Pandolfi P; Guberti E
    Ann Ig; 2008; 20(5):441-53. PubMed ID: 19069250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of pattern recognition classifiers to predict physical activities using smartphones and wearable body sensors.
    Kouris I; Koutsouris D
    Technol Health Care; 2012; 20(4):263-75. PubMed ID: 23000559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical classifier approach to physical activity recognition via wearable smartphone tri-axial accelerometer.
    Yusuf F; Maeder A; Basilakis J
    Stud Health Technol Inform; 2013; 188():174-80. PubMed ID: 23823307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical validation of a wearable system for emotional recognition based on biosignals.
    Pastor-Sanz L; Vera-Munoz C; Fico G; Arredondo MT
    J Telemed Telecare; 2008; 14(3):152-4. PubMed ID: 18430287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks.
    Ponce H; Miralles-Pechuán L; Martínez-Villaseñor ML
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27792136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning classifiers in glaucoma.
    Bowd C; Goldbaum MH
    Optom Vis Sci; 2008 Jun; 85(6):396-405. PubMed ID: 18521021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.