These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18270033)

  • 41. A wearable system for pre-impact fall detection.
    Nyan MN; Tay FE; Murugasu E
    J Biomech; 2008 Dec; 41(16):3475-81. PubMed ID: 18996529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Young people's use of sports facilities: a Norwegian study on physical activity.
    Limstrand T; Rehrer NJ
    Scand J Public Health; 2008 Jul; 36(5):452-9. PubMed ID: 18635728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Posterior probability profiles for the automated assessment of the recovery of patients with stroke from activity of daily living tasks.
    Van Dijck G; Van Vaerenbergh J; Van Hulle MM
    Artif Intell Med; 2009 Jul; 46(3):233-49. PubMed ID: 19409768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Multi-Activity Fusion Approach for Gender Recognition based on Human Activity.
    Koralege HK; Ngo T; Pathirana PN; Nakisa B
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Dijon Physical Activity Score: reproducibility and correlations with physical fitness in patients with coronary artery disease.
    Gremeaux V; Lemoine Y; Fargeot A; D'Athis P; Beer JC; Laurent Y; Cottin Y; Antoine D; Casillas JM
    Ann Readapt Med Phys; 2008 Jun; 51(5):366-78. PubMed ID: 18599146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Sport and health].
    Pène P; Touitou Y
    Bull Acad Natl Med; 2009 Feb; 193(2):415-29. PubMed ID: 19718895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sports activity (SA) recognition based on error correcting output codes (ECOC) and convolutional neural network (CNN).
    Lyu L; Huang Y
    Heliyon; 2024 Mar; 10(6):e28258. PubMed ID: 38545217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities.
    Kim KH; Cho SB
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking.
    Haghi M; Ershadi A; Deserno TM
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Weakly Supervised Recognition of Daily Life Activities with Wearable Sensors.
    Stikic M; Larlus D; Ebert S; Schiele B
    IEEE Trans Pattern Anal Mach Intell; 2011 Dec; 33(12):2521-37. PubMed ID: 21339526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living.
    Beltrame T; Amelard R; Wong A; Hughson RL
    Sci Rep; 2017 Apr; 7():45738. PubMed ID: 28378815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recognition of household and athletic activities using SmartShoe.
    Edgar SR; Fulk GD; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6382-5. PubMed ID: 23367389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.
    Trong Bui D; Nguyen ND; Jeong GM
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recognition of daily life motor activity classes using an artificial neural network.
    Kiani K; Snijders CJ; Gelsema ES
    Arch Phys Med Rehabil; 1998 Feb; 79(2):147-54. PubMed ID: 9473995
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Semi-Automatic Annotation Approach for Human Activity Recognition.
    Bota P; Silva J; Folgado D; Gamboa H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Movement prediction using accelerometers in a human population.
    Xiao L; He B; Koster A; Caserotti P; Lange-Maia B; Glynn NW; Harris TB; Crainiceanu CM
    Biometrics; 2016 Jun; 72(2):513-24. PubMed ID: 26288278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monitoring Physical Behavior in Rehabilitation Using a Machine Learning-Based Algorithm for Thigh-Mounted Accelerometers: Development and Validation Study.
    Skovbjerg F; Honoré H; Mechlenburg I; Lipperts M; Gade R; Næss-Schmidt ET
    JMIR Bioinform Biotechnol; 2022 Jul; 3(1):e38512. PubMed ID: 38935944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of Different Sets of Features for Human Activity Recognition by Wearable Sensors.
    Rosati S; Balestra G; Knaflitz M
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unsupervised clustering of free-living human activities using ambulatory accelerometry.
    Nguyen A; Moore D; McCowan I
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4895-8. PubMed ID: 18003103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-Sensor Fusion for Activity Recognition-A Survey.
    Aguileta AA; Brena RF; Mayora O; Molino-Minero-Re E; Trejo LA
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31484423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.