BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

980 related articles for article (PubMed ID: 18270081)

  • 1. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.
    Ito M; Noda K; Hoshino Y; Tani J
    Neural Netw; 2006 Apr; 19(3):323-37. PubMed ID: 16618536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB.
    Tani J; Ito M; Sugita Y
    Neural Netw; 2004; 17(8-9):1273-89. PubMed ID: 15555866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor primitive and sequence self-organization in a hierarchical recurrent neural network.
    Paine RW; Tani J
    Neural Netw; 2004; 17(8-9):1291-309. PubMed ID: 15555867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments.
    Tani J; Nishimoto R; Paine RW
    Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to recognize objects on the fly: a neurally based dynamic field approach.
    Faubel C; Schöner G
    Neural Netw; 2008 May; 21(4):562-76. PubMed ID: 18501555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking biped humanoids that perform manual labour.
    Hirukawa H
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):65-77. PubMed ID: 17148050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental word acquisition and grammar learning by humanoid robots through a self-organizing incremental neural network.
    He X; Ogura T; Satou A; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1357-72. PubMed ID: 17926715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of neural network to humanoid robots-development of co-associative memory model.
    Itoh K; Miwa H; Takanobu H; Takanishi A
    Neural Netw; 2005; 18(5-6):666-73. PubMed ID: 16109473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic approach to tacit learning based on compound control.
    Shimoda S; Kimura H
    IEEE Trans Syst Man Cybern B Cybern; 2010 Feb; 40(1):77-90. PubMed ID: 19651559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
    Cabras S; Castellanos ME; Staffetti E
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural learning classifier system with self-adaptive constructivism for mobile robot control.
    Hurst J; Bull L
    Artif Life; 2006; 12(3):353-80. PubMed ID: 16859445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new active visual system for humanoid robots.
    Xu D; Li YF; Tan M; Shen Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):320-30. PubMed ID: 18348917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humanoid robot Lola: design and walking control.
    Buschmann T; Lohmeier S; Ulbrich H
    J Physiol Paris; 2009; 103(3-5):141-8. PubMed ID: 19665558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.