BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18270406)

  • 1. Nuclease tolerant FRET probe based on DNA-quantum dot conjugation.
    Onoshima D; Kaji N; Tokeshi M; Baba Y
    Anal Sci; 2008 Feb; 24(2):181-3. PubMed ID: 18270406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot.
    Lao YH; Chi CW; Friedrich SM; Peck K; Wang TH; Leong KW; Chen LC
    ACS Appl Mater Interfaces; 2016 May; 8(19):12048-55. PubMed ID: 27101438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of DNA-quantum dot conjugates for the fluorescence ratiometric detection of unlabelled DNA.
    Page LE; Zhang X; Tyrakowski CM; Ho CT; Snee PT
    Analyst; 2016 Nov; 141(22):6251-6258. PubMed ID: 27704090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum dot-intercalating dye dual-donor FRET based biosensor.
    Zhang H; Zhou D
    Chem Commun (Camb); 2012 May; 48(42):5097-9. PubMed ID: 22441131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-triggered dye transfer on a quantum dot.
    Michaelis J; van der Heden van Noort GJ; Seitz O
    Bioconjug Chem; 2014 Jan; 25(1):18-23. PubMed ID: 24328356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.
    Chi CW; Lao YH; Li YS; Chen LC
    Biosens Bioelectron; 2011 Mar; 26(7):3346-52. PubMed ID: 21306887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk and single-molecule fluorescence studies of the saturation of the DNA double helix using YOYO-3 intercalator dye.
    Lopez SG; Ruedas-Rama MJ; Casares S; Alvarez-Pez JM; Orte A
    J Phys Chem B; 2012 Sep; 116(38):11561-9. PubMed ID: 22947035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A positively charged QDs-based FRET probe for micrococcal nuclease detection.
    Qiu T; Zhao D; Zhou G; Liang Y; He Z; Liu Z; Peng X; Zhou L
    Analyst; 2010 Sep; 135(9):2394-9. PubMed ID: 20676436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot-based resonance energy transfer and its growing application in biology.
    Medintz IL; Mattoussi H
    Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality.
    Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL
    J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.
    Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL
    J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positively charged compact quantum Dot-DNA complexes for detection of nucleic acids.
    Lee J; Choi Y; Kim J; Park E; Song R
    Chemphyschem; 2009 Mar; 10(5):806-11. PubMed ID: 19253931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform.
    Long F; Gu C; Gu AZ; Shi H
    Anal Chem; 2012 Apr; 84(8):3646-53. PubMed ID: 22455400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The detection of p53 gene via fluorescence quenching of quantum dot in microfluidic chip.
    Yoo JH; Yoo IS; Yoon WJ; Kim JS
    J Nanosci Nanotechnol; 2012 May; 12(5):4109-14. PubMed ID: 22852354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-phase single quantum dot fluorescence resonance energy transfer.
    Pons T; Medintz IL; Wang X; English DS; Mattoussi H
    J Am Chem Soc; 2006 Nov; 128(47):15324-31. PubMed ID: 17117885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots.
    Shahmuradyan A; Moazami-Goudarzi M; Kitazume F; Espie GS; Krull UJ
    Analyst; 2019 Feb; 144(4):1223-1229. PubMed ID: 30534674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.