BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18270755)

  • 1. Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding.
    Fukuzumi S; Kojima T
    J Biol Inorg Chem; 2008 Mar; 13(3):321-33. PubMed ID: 18270755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic control of redox reactivities of coenzyme analogs by metal ions.
    Fukuzumi S; Itoh S
    Antioxid Redox Signal; 2001 Oct; 3(5):807-24. PubMed ID: 11761329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An N1-hydrogen bonding model for flavin coenzyme.
    Guo F; Chang BH; Rizzo CJ
    Bioorg Med Chem Lett; 2002 Jan; 12(2):151-4. PubMed ID: 11755342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited flavin and pterin coenzyme molecules in evolution.
    Kritsky MS; Telegina TA; Vechtomova YL; Kolesnikov MP; Lyudnikova TA; Golub OA
    Biochemistry (Mosc); 2010 Oct; 75(10):1200-16. PubMed ID: 21166638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-conventional hydrogen bonds: pterins-metal anions.
    Vargas R; Martínez A
    Phys Chem Chem Phys; 2011 Jul; 13(28):12775-84. PubMed ID: 21695329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR spectroscopy on flavins and flavoproteins.
    Müller F
    Methods Mol Biol; 2014; 1146():229-306. PubMed ID: 24764095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial flavin receptors: effects of hydrogen bonding on redox properties of a flavin mimic.
    Yano Y
    Antioxid Redox Signal; 2001 Oct; 3(5):899-909. PubMed ID: 11761335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of flavin structure and redox state on catalysis by and flavin-pterin energy transfer in Escherichia coli DNA photolyase.
    Chanderkar LP; Jorns MS
    Biochemistry; 1991 Jan; 30(3):745-54. PubMed ID: 1988061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor.
    Gisewhite DR; Yang J; Williams BR; Esmail A; Stein B; Kirk ML; Burgmayer SJN
    J Am Chem Soc; 2018 Oct; 140(40):12808-12818. PubMed ID: 30200760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chemical and functional properties of flavin coenzymes].
    Setoyama C; Miura R
    Nihon Rinsho; 1999 Oct; 57(10):2193-8. PubMed ID: 10540861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diverse roles of flavin coenzymes--nature's most versatile thespians.
    Mansoorabadi SO; Thibodeaux CJ; Liu HW
    J Org Chem; 2007 Aug; 72(17):6329-42. PubMed ID: 17580897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond.
    Hamdane D; Bou-Nader C; Cornu D; Hui-Bon-Hoa G; Fontecave M
    Biochemistry; 2015 Jul; 54(28):4354-64. PubMed ID: 26120776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of redox potential of a pterin derivative bound to a ruthenium(II) complex by intermolecular hydrogen bonding with nucleobases.
    Inui Y; Miyazaki S; Ohkubo K; Fukuzumi S; Kojima T
    Angew Chem Int Ed Engl; 2012 May; 51(19):4623-7. PubMed ID: 22473682
    [No Abstract]   [Full Text] [Related]  

  • 16. Molybdenum-pterin complexes: a functional and structural model for the binding site in the enzyme dimethyl sulfoxide reductase.
    Fischer B; Schmalle H; Dubler E; Viscontini M
    Adv Exp Med Biol; 1993; 338():369-72. PubMed ID: 8304140
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrogen bond-free flavin redox properties: managing flavins in extreme aprotic solvents.
    Cerda JF; Koder RL; Lichtenstein BR; Moser CM; Miller AF; Dutton PL
    Org Biomol Chem; 2008 Jun; 6(12):2204-12. PubMed ID: 18528583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray structures of two oxidation states of a flavin-nicotinamide biscoenzyme and models for flavin--nicotinamide interactions.
    Porter DJ; Bright HJ; Voet D
    Nature; 1977 Sep; 269(5625):213-7. PubMed ID: 145544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bonding.
    Cooke G; Duclairoir FM; John P; Polwart N; Rotello VM
    Chem Commun (Camb); 2003 Oct; (19):2468-9. PubMed ID: 14587735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.