These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 18271038)
41. Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Fang F; Gong CY; Dong PW; Fu SZ; Gu YC; Guo G; Zhao X; Wei YQ; Qian ZY Biomed Mater; 2009 Apr; 4(2):025002. PubMed ID: 19208940 [TBL] [Abstract][Full Text] [Related]
42. Thermosensitive PEG-PCL-PEG hydrogel controlled drug delivery system: sol-gel-sol transition and in vitro drug release study. Gong CY; Dong PW; Shi S; Fu SZ; Yang JL; Guo G; Zhao X; Wei YQ; Qian ZY J Pharm Sci; 2009 Oct; 98(10):3707-17. PubMed ID: 19189419 [TBL] [Abstract][Full Text] [Related]
43. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Ajili SH; Ebrahimi NG; Soleimani M Acta Biomater; 2009 Jun; 5(5):1519-30. PubMed ID: 19249261 [TBL] [Abstract][Full Text] [Related]
45. Development of biodegradable polyesters with various microstructures for highly controlled release of epirubicin and cyclophosphamide. Żółtowska K; Piotrowska U; Oledzka E; Luchowska U; Sobczak M; Bocho-Janiszewska A Eur J Pharm Sci; 2017 Jan; 96():440-448. PubMed ID: 27742595 [TBL] [Abstract][Full Text] [Related]
46. Polymeric matrix for drug delivery: honokiol-loaded PCL-PEG-PCL nanoparticles in PEG-PCL-PEG thermosensitive hydrogel. Gou M; Gong C; Zhang J; Wang X; Wang X; Gu Y; Guo G; Chen L; Luo F; Zhao X; Wei Y; Qian Z J Biomed Mater Res A; 2010 Apr; 93(1):219-26. PubMed ID: 19557789 [TBL] [Abstract][Full Text] [Related]
47. In vitro degradation and controlled release behavior of D,L-PLGA50 and PCL-b-D,L-PLGA50 copolymer microspheres. Dong CM; Guo YZ; Qiu KY; Gu ZW; Feng XD J Control Release; 2005 Sep; 107(1):53-64. PubMed ID: 16005093 [TBL] [Abstract][Full Text] [Related]
48. Modeling of drug release from biodegradable polymer blends. Lao LL; Venkatraman SS; Peppas NA Eur J Pharm Biopharm; 2008 Nov; 70(3):796-803. PubMed ID: 18577449 [TBL] [Abstract][Full Text] [Related]
49. Novel semi-interpenetrating hydrogel networks with enhanced mechanical properties and thermoresponsive engineered drug delivery, designed as bioactive endotracheal tube biomaterials. Jones DS; Andrews GP; Caldwell DL; Lorimer C; Gorman SP; McCoy CP Eur J Pharm Biopharm; 2012 Nov; 82(3):563-71. PubMed ID: 22940251 [TBL] [Abstract][Full Text] [Related]
50. Antibiotic incorporation in jet-sprayed nanofibrillar biodegradable scaffolds for wound healing. Dzikowski M; Castanié N; Guedon A; Verrier B; Primard C; Sohier J Int J Pharm; 2017 Nov; 532(2):802-812. PubMed ID: 28864389 [TBL] [Abstract][Full Text] [Related]
51. Study on the drug release property of cholesteryl end-functionalized poly(epsilon-caprolactone) microspheres. Yu L; Zhang H; Cheng SX; Zhuo RX; Li H J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):39-46. PubMed ID: 16206259 [TBL] [Abstract][Full Text] [Related]
52. Biocompatible photocrosslinked poly(ester anhydride) based on functionalized poly(epsilon-caprolactone) prepolymer shows surface erosion controlled drug release in vitro and in vivo. Mönkäre J; Hakala RA; Vlasova MA; Huotari A; Kilpeläinen M; Kiviniemi A; Meretoja V; Herzig KH; Korhonen H; Seppälä JV; Järvinen K J Control Release; 2010 Sep; 146(3):349-55. PubMed ID: 20558218 [TBL] [Abstract][Full Text] [Related]
53. Selective localization of multiwalled carbon nanotubes in poly(epsilon-caprolactone)/polylactide blend. Wu D; Zhang Y; Zhang M; Yu W Biomacromolecules; 2009 Feb; 10(2):417-24. PubMed ID: 19140730 [TBL] [Abstract][Full Text] [Related]
54. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation. Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881 [TBL] [Abstract][Full Text] [Related]
56. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties. Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912 [TBL] [Abstract][Full Text] [Related]
57. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798 [TBL] [Abstract][Full Text] [Related]
58. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) amphiphilic triblock copolymer micelles. Ge H; Hu Y; Jiang X; Cheng D; Yuan Y; Bi H; Yang C J Pharm Sci; 2002 Jun; 91(6):1463-73. PubMed ID: 12115846 [TBL] [Abstract][Full Text] [Related]
59. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates. Musiał-Kulik M; Kasperczyk J; Jelonek K; Dobrzyński P; Gebarowska K; Janeczek H; Libera M Acta Pol Pharm; 2010; 67(6):664-8. PubMed ID: 21229883 [TBL] [Abstract][Full Text] [Related]
60. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]