BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1827114)

  • 81. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Presteady-state kinetics of ATP hydrolysis by chloroplast CF1-ATPASE].
    Mal'ian AN; Vitseva OI
    Biokhimiia; 1983 May; 48(5):718-24. PubMed ID: 6223667
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An archaebacterial ATPase from Halobacterium saccharovorum.
    Altekar W; Kristjansson H; Ponnamperuma C; Hochstein L
    Orig Life; 1984; 14(1-4):733-8. PubMed ID: 11536586
    [No Abstract]   [Full Text] [Related]  

  • 84. Adenine nucleotide-binding sites on mitochondrial F1-ATPase. Evidence for an adenylate kinase-like orientation of catalytic and noncatalytic sites.
    Vogel PD; Cross RL
    J Biol Chem; 1991 Apr; 266(10):6101-5. PubMed ID: 1826104
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The H+-translocating ATP synthase in Halobacterium halobium differs from F0F1-ATPase/synthase.
    Mukohata Y; Yoshida M
    J Biochem; 1987 Oct; 102(4):797-802. PubMed ID: 2893789
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Adenine nucleotide-binding sites on mitochondrial F1-ATPase: studies of the inactive complex formed upon binding ADP at a catalytic site.
    Chernyak BV; Cross RL
    Arch Biochem Biophys; 1992 Jun; 295(2):247-52. PubMed ID: 1534000
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The native mitochondrial F1-inhibitor protein complex carries out uni- and multisite ATP hydrolysis.
    Vázquez-Laslop N; Dreyfus G
    J Biol Chem; 1990 Nov; 265(31):19002-6. PubMed ID: 2146268
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Tightly bound 2-azido-adenine nucleotides at catalytic and noncatalytic sites of the rat liver F1 ATPase label adjacent tryptic peptides of the beta subunit.
    Guerrero KJ; Boyer PD
    Biochem Biophys Res Commun; 1988 Aug; 154(3):854-60. PubMed ID: 2900637
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The plasma membrane ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Purification and immunological relationships to F1-ATPases.
    Lübben M; Lünsdorf H; Schäfer G
    Eur J Biochem; 1987 Sep; 167(2):211-9. PubMed ID: 2887427
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mitochondrial F1-ATPase will bind and cleave ATP but only slowly release ADP after N,N'-dicyclohexylcarbodiimide or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole derivatization.
    Kandpal RP; Melese T; Stroop SD; Boyer PD
    J Biol Chem; 1985 May; 260(9):5542-7. PubMed ID: 2859288
    [TBL] [Abstract][Full Text] [Related]  

  • 91. 1H-NMR studies on nucleotide binding to the catalytic sites of bovine mitochondrial F1-ATPase.
    Garin J; Vignais PV; Gronenborn AM; Clore GM; Gao Z; Baeuerlein E
    FEBS Lett; 1988 Dec; 242(1):178-82. PubMed ID: 2904888
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Nucleotide-protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum.
    Sulzner M; Stan-Lotter H; Hochstein LI
    Arch Biochem Biophys; 1992 Jul; 296(1):347-9. PubMed ID: 1534982
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Vacuolar ATPases, like F1,F0-ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme.
    Kasho VN; Boyer PD
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8708-11. PubMed ID: 2530585
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Inhibition of chloroplast CF1-ATPase by vanadate.
    Carmeli C; Tadmor O; Lifshitz Y; Ophir R; Carmeli S
    FEBS Lett; 1992 Mar; 299(3):227-30. PubMed ID: 1531965
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Properties of chloroplast F1-ATPase partially modified by 2-azido adenine nucleotides, including demonstration of three catalytic pathways.
    Xue ZX; Melese T; Stempel KE; Reedy TJ; Boyer PD
    J Biol Chem; 1988 Nov; 263(32):16880-5. PubMed ID: 2903156
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Structure of F
    Petri J; Nakatani Y; Montgomery MG; Ferguson SA; Aragão D; Leslie AGW; Heikal A; Walker JE; Cook GM
    Open Biol; 2019 Jun; 9(6):190066. PubMed ID: 31238823
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Two types of kinetic regulation of the activated ATPase in the chloroplast photophosphorylation system.
    Sherman PA; Wimmer MJ
    J Biol Chem; 1982 Jun; 257(12):7012-7. PubMed ID: 6211439
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Stability of bound ADP functioning as a phosphoryl donor in ATP synthesis by chloroplasts.
    Moudrianakis EN; Tiefert MA
    J Biol Chem; 1979 Oct; 254(19):9509-17. PubMed ID: 158590
    [No Abstract]   [Full Text] [Related]  

  • 100. Some peculiarities of functioning of H+-ATPase from the membranes of the anaerobic bacterium Lactobacillus casei.
    Mileykovskaya EI; Abuladze AN; Kormer SS; Ostrovsky DN
    Eur J Biochem; 1987 Sep; 167(2):367-70. PubMed ID: 2887429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.