These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18271513)

  • 21. Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer.
    Bollivar DW; Clauson C; Lighthall R; Forbes S; Kokona B; Fairman R; Kundrat L; Jaffe EK
    BMC Biochem; 2004 Nov; 5():17. PubMed ID: 15555082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism.
    Frère F; Schubert WD; Stauffer F; Frankenberg N; Neier R; Jahn D; Heinz DW
    J Mol Biol; 2002 Jul; 320(2):237-47. PubMed ID: 12079382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational insights into the mechanism of porphobilinogen synthase.
    Erdtman E; Bushnell EA; Gauld JW; Eriksson LA
    J Phys Chem B; 2010 Dec; 114(50):16860-70. PubMed ID: 21090799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and molecular characterization of a novel porphobilinogen synthase from Corynebacterium glutamicum.
    Zhu D; Wu C; Niu C; Li H; Ge F; Li W
    World J Microbiol Biotechnol; 2023 Apr; 39(6):165. PubMed ID: 37071336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions.
    Frankenberg N; Jahn D; Jaffe EK
    Biochemistry; 1999 Oct; 38(42):13976-82. PubMed ID: 10529244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase.
    Frankenberg N; Erskine PT; Cooper JB; Shoolingin-Jordan PM; Jahn D; Heinz DW
    J Mol Biol; 1999 Jun; 289(3):591-602. PubMed ID: 10356331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding the Concepts in Protein Structure-Function Relationships and Enzyme Kinetics: Teaching using Morpheeins.
    Lawrence SH; Jaffe EK
    Biochem Mol Biol Educ; 2008; 36(4):274-283. PubMed ID: 19578473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(II) and monovalent cations.
    Petrovich RM; Litwin S; Jaffe EK
    J Biol Chem; 1996 Apr; 271(15):8692-9. PubMed ID: 8621501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the active site of rat porphobilinogen synthase using newly developed inhibitors.
    Li N; Chu X; Liu X; Li D
    Bioorg Chem; 2009 Feb; 37(1):33-40. PubMed ID: 19095280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic mechanism of porphobilinogen synthase: the chemical step revisited by QM/MM calculations.
    Tian BX; Erdtman E; Eriksson LA
    J Phys Chem B; 2012 Oct; 116(40):12105-12. PubMed ID: 22974111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 5-Chlorolevulinate modification of porphobilinogen synthase identifies a potential role for the catalytic zinc.
    Jaffe EK; Abrams WR; Kaempfen HX; Harris KA
    Biochemistry; 1992 Feb; 31(7):2113-23. PubMed ID: 1346974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allostery and the dynamic oligomerization of porphobilinogen synthase.
    Jaffe EK; Lawrence SH
    Arch Biochem Biophys; 2012 Mar; 519(2):144-53. PubMed ID: 22037356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production, purification, and characterization of a Mg2+-responsive porphobilinogen synthase from Pseudomonas aeruginosa.
    Frankenberg N; Heinz DW; Jahn D
    Biochemistry; 1999 Oct; 38(42):13968-75. PubMed ID: 10529243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape shifting leads to small-molecule allosteric drug discovery.
    Lawrence SH; Ramirez UD; Tang L; Fazliyez F; Kundrat L; Markham GD; Jaffe EK
    Chem Biol; 2008 Jun; 15(6):586-96. PubMed ID: 18559269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porphobilinogen synthase, the first source of heme's asymmetry.
    Jaffe EK
    J Bioenerg Biomembr; 1995 Apr; 27(2):169-79. PubMed ID: 7592564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic basis for suicide inactivation of porphobilinogen synthase by 4,7-dioxosebacic acid, an inhibitor that shows dramatic species selectivity.
    Kervinen J; Jaffe EK; Stauffer F; Neier R; Wlodawer A; Zdanov A
    Biochemistry; 2001 Jul; 40(28):8227-36. PubMed ID: 11444968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Group 13 metals on porphobilinogen synthase in vitro.
    Rocha JB; Tuerlinckx SM; Schetinger MR; Folmer V
    Toxicol Appl Pharmacol; 2004 Nov; 200(3):169-76. PubMed ID: 15504453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A structural basis for half-of-the-sites metal binding revealed in Drosophila melanogaster porphobilinogen synthase.
    Kundrat L; Martins J; Stith L; Dunbrack RL; Jaffe EK
    J Biol Chem; 2003 Aug; 278(33):31325-30. PubMed ID: 12794073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.