BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18272272)

  • 1. Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots.
    Israr M; Sahi SV
    Environ Pollut; 2008 May; 153(1):29-36. PubMed ID: 18272272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil.
    Ruley AT; Sharma NC; Sahi SV; Singh SR; Sajwan KS
    Environ Pollut; 2006 Nov; 144(1):11-8. PubMed ID: 16522347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter.
    López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL
    Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations.
    Hadi F; Bano A; Fuller MP
    Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents.
    Lou LQ; Ye ZH; Wong MH
    Int J Phytoremediation; 2007; 9(4):325-43. PubMed ID: 18246709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.
    Du RJ; He EK; Tang YT; Hu PJ; Ying RR; Morel JL; Qiu RL
    Int J Phytoremediation; 2011; 13(10):1024-36. PubMed ID: 21972569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry.
    Andra SS; Datta R; Sarkar D; Saminathan SK; Mullens CP; Bach SB
    Environ Pollut; 2009 Jul; 157(7):2173-83. PubMed ID: 19282075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the efficacy of chelate-assisted phytoextraction of lead by coffeeweed (Sesbania exaltata Raf.).
    Miller G; Begonia G; Begonia M; Ntoni J; Hundley O
    Int J Environ Res Public Health; 2008 Dec; 5(5):428-35. PubMed ID: 19151439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelate-enhanced phytoextraction of lead-contaminated soils using coffeeweed (Sesbania exaltata Raf.).
    Begonia GB; Miller GS; Begonia MF; Burks C
    Bull Environ Contam Toxicol; 2002 Nov; 69(5):624-31. PubMed ID: 12375108
    [No Abstract]   [Full Text] [Related]  

  • 11. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil.
    Liphadzi MS; Kirkham MB; Paulsen GM
    Environ Technol; 2006 Jun; 27(6):695-704. PubMed ID: 16865925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of root damage in the chelate-enhanced accumulation of lead by Indian mustard plants.
    Luo C; Shen Z; Li X; Baker AJ
    Int J Phytoremediation; 2006; 8(4):323-37. PubMed ID: 17305306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii.
    Liu D; Li TQ; Jin XF; Yang XE; Islam E; Mahmood Q
    J Integr Plant Biol; 2008 Feb; 50(2):129-40. PubMed ID: 18713434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead uptake and the effects of EDTA on lead-tissue concentrations in the desert species mesquite (Prosopis spp.).
    Aldrich MV; Ellzey lJ; Peralta-Videa JR; Gonzalez JH; Gardea-Torresdey JL
    Int J Phytoremediation; 2004; 6(3):195-207. PubMed ID: 15554473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system.
    Liu D; Islam E; Ma J; Wang X; Mahmood Q; Jin X; Li T; Yang X; Gupta D
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):30-5. PubMed ID: 18484226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii hance using EDTA and IAA.
    Liu D; Li T; Yang X; Islam E; Jin X; Mahmood Q
    Bull Environ Contam Toxicol; 2007 Apr; 78(3-4):280-3. PubMed ID: 17437053
    [No Abstract]   [Full Text] [Related]  

  • 18. Gibberellic acid, kinetin, and the mixture indole-3-acetic acid-kinetin assisted with EDTA-induced lead hyperaccumnulation in alfalfa plants.
    López ML; Peralta-Videa JR; Parsons JG; Benitez T; Gardea-Torresdey JL
    Environ Sci Technol; 2007 Dec; 41(23):8165-70. PubMed ID: 18186354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq.
    Cui S; Zhou QX; Wei SH; Zhang W; Cao L; Ren LP
    J Hazard Mater; 2007 Jul; 146(1-2):341-6. PubMed ID: 17254705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability and uptake of lead by coffeeweed (Sesbania exaltata Raf.).
    Miller G; Begonia G; Begonia M; Ntoni J
    Int J Environ Res Public Health; 2008 Dec; 5(5):436-40. PubMed ID: 19151440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.