BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1255 related articles for article (PubMed ID: 18272290)

  • 1. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability.
    Giessing C; Thiel CM; Rösler F; Fink GR
    Neuroscience; 2006 Feb; 137(3):853-64. PubMed ID: 16309846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non-smoking subjects.
    Vossel S; Thiel CM; Fink GR
    Neuropsychopharmacology; 2008 Mar; 33(4):731-8. PubMed ID: 17551539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI data predict individual differences of behavioral effects of nicotine: a partial least square analysis.
    Giessing C; Fink GR; Rösler F; Thiel CM
    J Cogn Neurosci; 2007 Apr; 19(4):658-70. PubMed ID: 17381256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.
    Thiel CM; Zilles K; Fink GR
    Neuropsychopharmacology; 2005 Apr; 30(4):810-20. PubMed ID: 15668726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of nicotine on visuo-spatial selective attention as indexed by event-related potentials.
    Meinke A; Thiel CM; Fink GR
    Neuroscience; 2006 Aug; 141(1):201-12. PubMed ID: 16713104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of nicotine on visuospatial attention in chronic spatial neglect depends upon lesion location.
    Vossel S; Kukolja J; Thimm M; Thiel CM; Fink GR
    J Psychopharmacol; 2010 Sep; 24(9):1357-65. PubMed ID: 19477881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What is "odd" in Posner's location-cueing paradigm? Neural responses to unexpected location and feature changes compared.
    Vossel S; Weidner R; Thiel CM; Fink GR
    J Cogn Neurosci; 2009 Jan; 21(1):30-41. PubMed ID: 18476756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine.
    Thiel CM; Fink GR
    J Neurophysiol; 2007 Apr; 97(4):2758-68. PubMed ID: 17287445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting.
    Zhou X; Chen Q
    Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural mechanisms of top-down attentional control.
    Hopfinger JB; Buonocore MH; Mangun GR
    Nat Neurosci; 2000 Mar; 3(3):284-91. PubMed ID: 10700262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.