BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

737 related articles for article (PubMed ID: 18272356)

  • 1. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity.
    Collemare J; Billard A; Böhnert HU; Lebrun MH
    Mycol Res; 2008 Feb; 112(Pt 2):207-15. PubMed ID: 18272356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme.
    Yun CS; Motoyama T; Osada H
    Nat Commun; 2015 Oct; 6():8758. PubMed ID: 26503170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism.
    Collemare J; Pianfetti M; Houlle AE; Morin D; Camborde L; Gagey MJ; Barbisan C; Fudal I; Lebrun MH; Böhnert HU
    New Phytol; 2008; 179(1):196-208. PubMed ID: 18433432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
    Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B
    Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites.
    Ansari MZ; Sharma J; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2008 Oct; 9():454. PubMed ID: 18950525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of genes expressed during rice-Magnaporthe grisea interactions.
    Kim S; Ahn IP; Lee YH
    Mol Plant Microbe Interact; 2001 Nov; 14(11):1340-6. PubMed ID: 11763134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice.
    Böhnert HU; Fudal I; Dioh W; Tharreau D; Notteghem JL; Lebrun MH
    Plant Cell; 2004 Sep; 16(9):2499-513. PubMed ID: 15319478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular diversity sculpted by fungal PKS-NRPS hybrids.
    Boettger D; Hertweck C
    Chembiochem; 2013 Jan; 14(1):28-42. PubMed ID: 23225733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea.
    Donofrio NM; Oh Y; Lundy R; Pan H; Brown DE; Jeong JS; Coughlan S; Mitchell TK; Dean RA
    Fungal Genet Biol; 2006 Sep; 43(9):605-17. PubMed ID: 16731015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.
    Sesma A; Osbourn AE
    Nature; 2004 Sep; 431(7008):582-6. PubMed ID: 15457264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics.
    Nikolouli K; Mossialos D
    Biotechnol Lett; 2012 Aug; 34(8):1393-403. PubMed ID: 22481301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus Magnaporthe grisea.
    Veneault-Fourrey C; Talbot NJ
    Adv Appl Microbiol; 2005; 57():177-215. PubMed ID: 16002013
    [No Abstract]   [Full Text] [Related]  

  • 14. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characterization of oxysterol binding protein homolog MgORP1 in the rice blast fungus Magnaporthe grisea].
    Chunhua L; Fucong Z
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1160-7. PubMed ID: 19062638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MGOS: A resource for studying Magnaporthe grisea and Oryza sativa interactions.
    Soderlund C; Haller K; Pampanwar V; Ebbole D; Farman M; Orbach MJ; Wang GL; Wing R; Xu JR; Brown D; Mitchell T; Dean R
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1055-61. PubMed ID: 17022169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene.
    Kang S; Lebrun MH; Farrall L; Valent B
    Mol Plant Microbe Interact; 2001 May; 14(5):671-4. PubMed ID: 11332731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes.
    Schümann J; Hertweck C
    J Biotechnol; 2006 Aug; 124(4):690-703. PubMed ID: 16716432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea.
    Odenbach D; Breth B; Thines E; Weber RW; Anke H; Foster AJ
    Mol Microbiol; 2007 Apr; 64(2):293-307. PubMed ID: 17378924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea.
    Villalba F; Lebrun MH; Hua-Van A; Daboussi MJ; Grosjean-Cournoyer MC
    Mol Plant Microbe Interact; 2001 Mar; 14(3):308-15. PubMed ID: 11277428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.