These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 18272377)

  • 1. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids.
    Ferrer JL; Austin MB; Stewart C; Noel JP
    Plant Physiol Biochem; 2008 Mar; 46(3):356-70. PubMed ID: 18272377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone.
    Moore BS; Hertweck C; Hopke JN; Izumikawa M; Kalaitzis JA; Nilsen G; O'Hare T; Piel J; Shipley PR; Xiang L; Austin MB; Noel JP
    J Nat Prod; 2002 Dec; 65(12):1956-62. PubMed ID: 12502351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, function, and engineering of enzymes in isoflavonoid biosynthesis.
    Wang X
    Funct Integr Genomics; 2011 Mar; 11(1):13-22. PubMed ID: 21052759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae.
    Seshime Y; Juvvadi PR; Fujii I; Kitamoto K
    Biochem Biophys Res Commun; 2005 Nov; 337(3):747-51. PubMed ID: 16182237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism.
    Payyavula RS; Singh RK; Navarre DA
    J Exp Bot; 2013 Nov; 64(16):5115-31. PubMed ID: 24098049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families.
    de Vries S; Fürst-Jansen JMR; Irisarri I; Dhabalia Ashok A; Ischebeck T; Feussner K; Abreu IN; Petersen M; Feussner I; de Vries J
    Plant J; 2021 Aug; 107(4):975-1002. PubMed ID: 34165823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.
    Robbins ML; Roy A; Wang PH; Gaffoor I; Sekhon RS; de O Buanafina MM; Rohila JS; Chopra S
    J Proteomics; 2013 Nov; 93():254-75. PubMed ID: 23811284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux.
    Fornalé S; Shi X; Chai C; Encina A; Irar S; Capellades M; Fuguet E; Torres JL; Rovira P; Puigdomènech P; Rigau J; Grotewold E; Gray J; Caparrós-Ruiz D
    Plant J; 2010 Nov; 64(4):633-44. PubMed ID: 21070416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides.
    Yu O; Jez JM
    Plant J; 2008 May; 54(4):750-62. PubMed ID: 18476876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses.
    Pratyusha DS; Sarada DVL
    Plant Cell Rep; 2022 Dec; 41(12):2245-2260. PubMed ID: 36171500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis.
    Ferrer JL; Jez JM; Bowman ME; Dixon RA; Noel JP
    Nat Struct Biol; 1999 Aug; 6(8):775-84. PubMed ID: 10426957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses--a review.
    Dixon RA; Lamb CJ; Masoud S; Sewalt VJ; Paiva NL
    Gene; 1996 Nov; 179(1):61-71. PubMed ID: 8955630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives.
    Wang S; Zhang S; Xiao A; Rasmussen M; Skidmore C; Zhan J
    Metab Eng; 2015 May; 29():153-159. PubMed ID: 25819309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responsiveness of Aromatoleum aromaticum EbN1
    Vagts J; Kalvelage K; Weiten A; Buschen R; Gutsch J; Scheve S; Wöhlbrand L; Diener S; Wilkes H; Winklhofer M; Rabus R
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases.
    Ralston L; Subramanian S; Matsuno M; Yu O
    Plant Physiol; 2005 Apr; 137(4):1375-88. PubMed ID: 15778463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of FERULATE 5-HYDROXYLASE Leads to Mediator-Dependent Inhibition of Soluble Phenylpropanoid Biosynthesis in Arabidopsis.
    Anderson NA; Bonawitz ND; Nyffeler K; Chapple C
    Plant Physiol; 2015 Nov; 169(3):1557-67. PubMed ID: 26048881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli.
    Choi O; Wu CZ; Kang SY; Ahn JS; Uhm TB; Hong YS
    J Ind Microbiol Biotechnol; 2011 Oct; 38(10):1657-65. PubMed ID: 21424580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants.
    Lavhale SG; Kalunke RM; Giri AP
    Planta; 2018 Nov; 248(5):1063-1078. PubMed ID: 30078075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.