These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 18272792)

  • 21. Sensitivity of the knee joint kinematics calculation to selection of flexion axes.
    Most E; Axe J; Rubash H; Li G
    J Biomech; 2004 Nov; 37(11):1743-8. PubMed ID: 15388317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The role of posterolateral structure and posterior cruciate ligament in external rotatory stability of the knee].
    Nie XZ; Sun R; Chen BC; Ma XY; Wang XF
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1890-3. PubMed ID: 17923011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load.
    Lo J; Müller O; Wünschel M; Bauer S; Wülker N
    J Biomech; 2008; 41(9):1855-61. PubMed ID: 18513729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A clinical device for measuring internal-external rotational laxity of the knee.
    Alam M; Bull AM; Thomas Rd; Amis AA
    Am J Sports Med; 2013 Jan; 41(1):87-94. PubMed ID: 23277467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-bundle anterior cruciate ligament reconstruction: a comprehensive kinematic study using navigation.
    Ferretti A; Monaco E; Labianca L; De Carli A; Maestri B; Conteduca F
    Am J Sports Med; 2009 Aug; 37(8):1548-53. PubMed ID: 19564423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative role changing of lateral collateral ligament on the posterolateral rotatory instability according to the knee flexion angles: a biomechanical comparative study of role of lateral collateral ligament and popliteofibular ligament.
    Lim HC; Bae JH; Bae TS; Moon BC; Shyam AK; Wang JH
    Arch Orthop Trauma Surg; 2012 Nov; 132(11):1631-6. PubMed ID: 22847725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the medial collateral ligament and posteromedial capsule in controlling knee laxity.
    Robinson JR; Bull AM; Thomas RR; Amis AA
    Am J Sports Med; 2006 Nov; 34(11):1815-23. PubMed ID: 16816148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-bundle anterior cruciate ligament reconstruction: a comparison of conventional, central, and horizontal single-bundle virtual graft positions.
    Brophy RH; Pearle AD
    Am J Sports Med; 2009 Jul; 37(7):1317-23. PubMed ID: 19329787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidirectional kinematics of the glenohumeral joint during simulated simple translation tests: impact on clinical diagnoses.
    Moore SM; Musahl V; McMahon PJ; Debski RE
    J Orthop Res; 2004 Jul; 22(4):889-94. PubMed ID: 15183451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical and anatomical assessment after knee hyperextension injury.
    Fornalski S; McGarry MH; Csintalan RP; Fithian DC; Lee TQ
    Am J Sports Med; 2008 Jan; 36(1):80-4. PubMed ID: 17932409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elbow valgus laxity may result in an overestimation of apparent shoulder external rotation during physical examination.
    Mihata T; Safran MR; McGarry MH; Abe M; Lee TQ
    Am J Sports Med; 2008 May; 36(5):978-82. PubMed ID: 18272796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The contact locations in the knee during high flexion.
    Yildirim G; Walker PS; Sussman-Fort J; Aggarwal G; White B; Klein GR
    Knee; 2007 Oct; 14(5):379-84. PubMed ID: 17683941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical comparison of medial collateral ligament reconstructions using computer-assisted navigation.
    Feeley BT; Muller MS; Allen AA; Granchi CC; Pearle AD
    Am J Sports Med; 2009 Jun; 37(6):1123-30. PubMed ID: 19279225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new tibial coordinate system improves the precision of anterior-posterior knee laxity measurements: a cadaveric study using Roentgen stereophotogrammetric analysis.
    Roos PJ; Neu CP; Hull ML; Howell SM
    J Orthop Res; 2005 Mar; 23(2):327-33. PubMed ID: 15734244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contributions of the posterolateral bundle of the anterior cruciate ligament to anterior-posterior knee laxity and ligament forces.
    Markolf KL; Park S; Jackson SR; McAllister DR
    Arthroscopy; 2008 Jul; 24(7):805-9. PubMed ID: 18589269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mobile-bearing knee prosthesis can reduce strain at the proximal tibia.
    Bottlang M; Erne OK; Lacatusu E; Sommers MB; Kessler O
    Clin Orthop Relat Res; 2006 Jun; 447():105-11. PubMed ID: 16456313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of 3-dimensional obliquity and anisometric characteristics of anterior cruciate ligament graft positions using surgical navigation.
    Pearle AD; Shannon FJ; Granchi C; Wickiewicz TL; Warren RF
    Am J Sports Med; 2008 Aug; 36(8):1534-41. PubMed ID: 18390491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of tibial rotation on the patellofemoral joint: assessment of the changes in in situ strain in the peripatellar retinaculum and the patellofemoral contact pressures and areas.
    Lee TQ; Yang BY; Sandusky MD; McMahon PJ
    J Rehabil Res Dev; 2001; 38(5):463-9. PubMed ID: 11732824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.