BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 182732)

  • 1. Nature of the iron-ligand bond in ferrous low spin hemoproteins studied by resonance Raman scattering.
    Kitagawa T; Kyogoku Y; Iizuka T; Saito MI
    J Am Chem Soc; 1976 Aug; 98(17):5169-73. PubMed ID: 182732
    [No Abstract]   [Full Text] [Related]  

  • 2. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ligand field strength on nonresonance Raman characteristics of hemoproteins.
    Johjima T; Wariishi H; Tanaka H
    Biochem Biophys Res Commun; 1996 Sep; 226(3):601-6. PubMed ID: 8831664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman scattering from hemoproteins. Effects of ligands upon the Raman spectra of various C-type cytochromes.
    Kitagawa T; Kyogoku Y; Iizuka T; Ikeda-Saito M; Yamanaka T
    J Biochem; 1975 Oct; 78(4):719-28. PubMed ID: 2584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman scattering from hemoproteins: pH-dependence of Raman spectra of ferrous dicarboxymethyl-methionyl-cytochrome c.
    Ikeda-Saito M; Kitagawa T; Iizuka T; Kyogoku Y
    FEBS Lett; 1975 Feb; 50(2):233-5. PubMed ID: 234859
    [No Abstract]   [Full Text] [Related]  

  • 6. Protoheme conformations in low-spin ferrohemoproteins. Resonance Raman spectroscopy.
    Desbois A; Lutz M; Banerjee R
    Biochim Biophys Acta; 1981 Dec; 671(2):184-92. PubMed ID: 7198917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: detection of Fe(III)--NO stretching, Fe(III)--N--O bending, and Fe(II)--N--O bending vibrations.
    Benko B; Yu NT
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):7042-6. PubMed ID: 6580627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the heme electronic states in equilibrium and nonequilibrium protein conformations of high-spin ferrous hemoproteins. Low temperature magnetic circular dichroism studies.
    Sharonov YA; Sharonova NA; Figlovsky VA; Grigorjev VA
    Biochim Biophys Acta; 1982 Dec; 709(2):332-41. PubMed ID: 6295493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins.
    Martin W; Villani GM; Jothianandan D; Furchgott RF
    J Pharmacol Exp Ther; 1985 Jun; 233(3):679-85. PubMed ID: 2861277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin changes in hemoproteins.
    Iizuka T; Yonetani T
    Adv Biophys; 1970; 1():157-82. PubMed ID: 4353971
    [No Abstract]   [Full Text] [Related]  

  • 11. Nuclear magnetic resonance studies of high-spin ferric hemoproteins.
    Morishmima I; Ogawa S; Inubushi T; Iizuka T
    Adv Biophys; 1978; 11():217-45. PubMed ID: 27954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic properties of ferrous heme complexes of sterically hindered ligands.
    Wagner GC; Kassner RJ
    Biochim Biophys Acta; 1975 Jun; 392(2):319-27. PubMed ID: 165836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic circular dichroism approach to hemoprotein analyses.
    Hatano M; Nozawa T
    Adv Biophys; 1978; 11():95-149. PubMed ID: 354350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy.
    Yammoto T; Palmer G
    J Biol Chem; 1973 Jul; 248(14):5211-3. PubMed ID: 4352197
    [No Abstract]   [Full Text] [Related]  

  • 16. A photolysis-triggered heme ligand switch in H93G myoglobin.
    Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG
    Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anomaly in the resonance Raman spectra of cytochrome P-450cam in the ferrous high-spin state.
    Ozaki Y; Kitagawa T; Kyogoku Y; Shimada H; Iizuka T
    J Biochem; 1976 Dec; 80(6):1447-51. PubMed ID: 1018022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Five-coordinate iron-porphyrin as a model for the active site of hemoproteins. Characterization and coordination properties.
    Momenteau M; Rougée M; Loock B
    Eur J Biochem; 1976 Dec; 71(1):63-76. PubMed ID: 1009955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman studies of cytochrome c' support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors.
    Andrew CR; Green EL; Lawson DM; Eady RR
    Biochemistry; 2001 Apr; 40(13):4115-22. PubMed ID: 11300792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENDOR from nitrogens and protons in low spin ferric heme and hemoprotein.
    Scholes CP; Van Camp HL
    Biochim Biophys Acta; 1976 May; 434(1):290-5. PubMed ID: 181067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.