These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18273219)

  • 1. T-matrix computations of light scattering by red blood cells.
    Nilsson AM; Alsholm P; Karlsson A; Andersson-Engels S
    Appl Opt; 1998 May; 37(13):2735-48. PubMed ID: 18273219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cell shape and aggregate formation on the optical properties of flowing whole blood.
    Enejder AM; Swartling J; Aruna P; Andersson-Engels S
    Appl Opt; 2003 Mar; 42(7):1384-94. PubMed ID: 12638895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Mie theory and the light scattering of red blood cells.
    Steinke JM; Shepherd AP
    Appl Opt; 1988 Oct; 27(19):4027-33. PubMed ID: 20539510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid.
    Xu F; Ren K; Gouesbet G; Gréhan G; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):119-31. PubMed ID: 17164850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level.
    Kinnunen M; Kauppila A; Karmenyan A; Myllylä R
    Biomed Opt Express; 2011 Jul; 2(7):1803-14. PubMed ID: 21750759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering of he-ne laser light by an average-sized red blood cell.
    Tsinopoulos SV; Polyzos D
    Appl Opt; 1999 Sep; 38(25):5499-510. PubMed ID: 18324059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering by randomly oriented spheroidal particles.
    Asano S; Sato M
    Appl Opt; 1980 Mar; 19(6):962-74. PubMed ID: 20220965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism and measurement of shape transformations of constant volume of human red blood cells.
    Hoffman JF
    Blood Cells; 1987; 12(3):565-88. PubMed ID: 3651613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension.
    Gandjbakhche AH; Mills P; Snabre P
    Appl Opt; 1994 Feb; 33(6):1070-8. PubMed ID: 20862118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering by aggregated red blood cells.
    Tsinopoulos SV; Sellountos EJ; Polyzos D
    Appl Opt; 2002 Mar; 41(7):1408-17. PubMed ID: 11900021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mueller matrices and information derived from linear polarization lidar measurements: theory.
    Ben-David A
    Appl Opt; 1998 Apr; 37(12):2448-63. PubMed ID: 18273180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria.
    Kotlarchyk M; Chen SH; Asano S
    Appl Opt; 1979 Jul; 18(14):2470-9. PubMed ID: 20212685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1809-18. PubMed ID: 26470043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements on the forward light scattering intensities of monodisperse latex particles and sphered or unsphered red blood cells.
    Bartels PC; Roijers AF; Soons JB
    Scand J Clin Lab Invest; 1988 Oct; 48(6):589-93. PubMed ID: 3217761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of red cell shape and orientation on propagation of sound in blood.
    Ahuja AS; Hendee WR
    Med Phys; 1977; 4(6):516-20. PubMed ID: 927389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical caustics observed in light scattered by an oblate spheroid.
    Lock JA; Xu F
    Appl Opt; 2010 Mar; 49(8):1288-304. PubMed ID: 20220884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light scattering by a coated sphere illuminated with a Gaussian beam.
    Khaled EE; Hill SC; Barber PW
    Appl Opt; 1994 May; 33(15):3308-14. PubMed ID: 20885703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.