These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18273245)

  • 1. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.
    Hirabayashi K; Yamamoto T; Matsuo S; Hino S
    Appl Opt; 1998 May; 37(14):2985-95. PubMed ID: 18273245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-space holographic optical interconnects for board-to-board and chip-to-chip interconnections.
    Yeh JH; Kostuk RK
    Opt Lett; 1996 Aug; 21(16):1274-6. PubMed ID: 19876323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid free-space optical bus system for board-to-board interconnections.
    Yeh JH; Kostuk RK; Tu KY
    Appl Opt; 1996 Nov; 35(32):6354-64. PubMed ID: 21127659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses.
    Strzelecka EM; Louderback DA; Thibeault BJ; Thompson GB; Bertilsson K; Coldren LA
    Appl Opt; 1998 May; 37(14):2811-21. PubMed ID: 18273227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a hybrid micro/macro-optical method for distortion removal in free-space optical interconnections.
    Christensen MP; Milojkovic P; Haney MW
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2473-8. PubMed ID: 12469743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 512-channel vertical-cavity surface-emitting laser based free-space optical link.
    Châteauneuf M; Kirk AG; Plant DV; Yamamoto T; Ahearn JD
    Appl Opt; 2002 Sep; 41(26):5552-61. PubMed ID: 12224778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital free-space optical interconnections: a comparison of transmitter technologies.
    Fan C; Mansoorian B; Van Blerkom DA; Hansen MW; Ozguz VH; Esener SC; Marsden GC
    Appl Opt; 1995 Jun; 34(17):3103-15. PubMed ID: 21052466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and analysis of an adaptive board-to-board dynamic holographic interconnect.
    O'Brien DC; Faulkner GE; Wilkinson TD; Robertson B; Leyva DG
    Appl Opt; 2004 Jun; 43(16):3297-305. PubMed ID: 15181810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-controlled multistage switch based on polarization-selective computer-generated holograms.
    Krishnamoorthy AV; Xu F; Ford JE; Fainman Y
    Appl Opt; 1997 Feb; 36(5):997-1010. PubMed ID: 18250764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of hybrid micro-macro optical method for distortion removal in multi-chip global free-space optical-interconnection systems.
    Christensen MP; McFadden MJ; Milojkovic P; Haney MW
    Appl Opt; 2002 Dec; 41(35):7480-6. PubMed ID: 12502306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chip- and board-level optical interconnections using rigid flexible optical electrical printed circuit boards.
    Hwang SH; Lee WJ; Lim JW; Jung KY; Cha KS; Rho BS
    Opt Express; 2008 May; 16(11):8077-83. PubMed ID: 18545520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiprocessor system using an automatically rearrangeable free-space multichannel optical switch: COSINE-2.
    Sakano T; Noguchi K; Matsumoto T
    Appl Opt; 1993 Jul; 32(20):3690-9. PubMed ID: 20829996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler.
    Lin X; Hosseini A; Dou X; Subbaraman H; Chen RT
    Opt Express; 2013 Jan; 21(1):60-9. PubMed ID: 23388896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays.
    Yamaguchi M; Yamamoto T; Yukimatsu K; Matsuo S; Amano C; Nakano Y; Kurokawa T
    Appl Opt; 1994 Mar; 33(8):1337-44. PubMed ID: 20862159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical circuitry for free-space interconnections.
    McCormick FB; Prise ME
    Appl Opt; 1990 May; 29(14):2013-8. PubMed ID: 20563128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors.
    Haney MW; Christensen MP; Milojkovic P; Ekman J; Chandramani P; Rozier R; Kiamilev F; Liu Y; Hibbs-Brenner M
    Appl Opt; 1999 Oct; 38(29):6190-200. PubMed ID: 18324143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testbed for a scalable terabit optical local area network.
    Au A; Supmonchai B; Szymanski TH
    Appl Opt; 2000 Aug; 39(23):4131-42. PubMed ID: 18349995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays.
    Wang R; Rakić AD; Majewski ML
    Appl Opt; 2002 Jun; 41(17):3469-78. PubMed ID: 12074519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance of a multiprocessor system employing board-to-board free-space optical interconnections: COSINE-1.
    Sakano T; Matsumoto T; Noguchi K; Sawabe T
    Appl Opt; 1991 Jun; 30(17):2334-43. PubMed ID: 20700211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image fiber optic space-CDMA parallel transmission experiment using 8 x 8 VCSEL/PD arrays.
    Nakamura M; Kitayama K; Igasaki Y; Shamoto N; Kaneda K
    Appl Opt; 2002 Nov; 41(32):6901-6. PubMed ID: 12440546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.