These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18273257)

  • 1. Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight.
    Churnside JH; Tatarskii VV; Wilson JJ
    Appl Opt; 1998 May; 37(15):3105-12. PubMed ID: 18273257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne polarized lidar detection of scattering layers in the ocean.
    Vasilkov AP; Goldin YA; Gureev BA; Hoge FE; Swift RN; Wright CW
    Appl Opt; 2001 Aug; 40(24):4353-64. PubMed ID: 18360476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oceanographic lidar profiles compared with estimates from in situ optical measurements.
    Lee JH; Churnside JH; Marchbanks RD; Donaghay PL; Sullivan JM
    Appl Opt; 2013 Feb; 52(4):786-94. PubMed ID: 23385921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lidar profiles of fish schools.
    Churnside JH; Wilson JJ; Tatarskii VV
    Appl Opt; 1997 Aug; 36(24):6011-20. PubMed ID: 18259445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme.
    Mei L; Guan P
    Opt Lett; 2017 Sep; 42(18):3562-3565. PubMed ID: 28914902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the air-water interface on hydrosol lidar operation.
    Kokhanenko GP; Krekova MM; Penner LE; Shamanaev VS
    Appl Opt; 2005 Jun; 44(17):3510-9. PubMed ID: 16007849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization effects on oceanographic lidar.
    Churnside JH
    Opt Express; 2008 Jan; 16(2):1196-207. PubMed ID: 18542194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Optical properties of human normal bladder tissue at five different wavelengths of laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Sep; 24(9):1039-41. PubMed ID: 15762517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient radiative transfer equation applied to oceanographic lidar.
    Mitra K; Churnside JH
    Appl Opt; 1999 Feb; 38(6):889-95. PubMed ID: 18305688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme.
    Mattis I; Tesche M; Grein M; Freudenthaler V; Müller D
    Appl Opt; 2009 May; 48(14):2742-51. PubMed ID: 19424398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory.
    Hoge FE
    Appl Opt; 2003 Dec; 42(36):7197-201. PubMed ID: 14717299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater.
    Liu Q; Liu D; Bai J; Zhang Y; Zhou Y; Xu P; Liu Z; Chen S; Che H; Wu L; Shen Y; Liu C
    Opt Express; 2018 Nov; 26(23):30278-30291. PubMed ID: 30469903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-component polarization measurement of lidar atmospheric scattering.
    Houston JD; Carswell AI
    Appl Opt; 1978 Feb; 17(4):614-20. PubMed ID: 20197836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarimetric LiDAR backscattering contrast of linearly and circularly polarized pulses for ideal depolarizing targets in generic water fogs.
    Tremblay G; Roy G
    Appl Opt; 2021 Feb; 60(5):1217-1231. PubMed ID: 33690553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization properties of lidar backscattering from clouds.
    Pal SR; Carswell AI
    Appl Opt; 1973 Jul; 12(7):1530-5. PubMed ID: 20125558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.
    He M; Hu Y; Huang JP; Stamnes K
    Opt Express; 2016 Dec; 24(26):A1618-A1634. PubMed ID: 28059358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrument response effects on the retrieval of oceanic lidar.
    Shen X; Liu Z; Zhou Y; Liu Q; Xu P; Mao Z; Liu C; Tang L; Ying N; Hu M; Liu D
    Appl Opt; 2020 Apr; 59(10):C21-C30. PubMed ID: 32400562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.