These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18273273)

  • 1. Airborne laser-induced oceanic chlorophyll fluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements.
    Hoge FE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 1998 May; 37(15):3222-6. PubMed ID: 18273273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oceanic radiance model development and validation: application of airborne active-passive ocean color spectral measurements.
    Hoge FE; Swift R; Yungel J
    Appl Opt; 1995 Jun; 34(18):3468-76. PubMed ID: 21052162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results.
    Hoge FE; Lyon PE; Swift RN; Yungel JK; Abbott MR; Letelier RM; Esaias WE
    Appl Opt; 2003 May; 42(15):2767-71. PubMed ID: 12777014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements.
    Hoge FE; Vodacek A; Swift RN; Yungel JK; Blough NV
    Appl Opt; 1995 Oct; 34(30):7032-8. PubMed ID: 21060564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter.
    Hoge FE; Lyon PE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2005 May; 44(14):2857-62. PubMed ID: 15943339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions.
    Hoge FE; Wright CW; Kana TM; Swift RN; Yungel JK
    Appl Opt; 1998 Jul; 37(21):4744-9. PubMed ID: 18285931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam attenuation coefficient retrieval by inversion of airborne lidar-induced chromophoric dissolved organic matter fluorescence. I. Theory.
    Hoge FE
    Appl Opt; 2006 Apr; 45(10):2344-51. PubMed ID: 16608003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO₄(2-) Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System.
    Chen J; Ye W; Guo J; Luo Z; Li Y
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiance-ratio algorithm wavelengths for remote oceanic chlorophyll determination.
    Hoge FE; Wright CW; Swift RN
    Appl Opt; 1987 Jun; 26(11):2082-94. PubMed ID: 20489826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter.
    Hoge FE; Swift RN
    Appl Opt; 1983 Dec; 22(23):3778-86. PubMed ID: 18200263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne system for fast measurements of upwelling and downwelling spectral actinic flux densities.
    Jäkel E; Wendisch M; Kniffka A; Trautmann T
    Appl Opt; 2005 Jan; 44(3):434-44. PubMed ID: 15717833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of the dependence of the sun-induced chlorophyll a fluorescence quantum yield on the environmental factors in the sea.
    Ostrowska M
    Opt Express; 2012 Oct; 20(21):23300-17. PubMed ID: 23188293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes.
    Prasad DK; Agarwal K
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27011185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths.
    Ge Y; Gordon HR; Voss KJ
    Appl Opt; 1993 Jul; 32(21):4028-36. PubMed ID: 20830044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of irradiance exposure and non-photochemical quenching for multi-wavelength (bbe FluoroProbe) fluorometry.
    Harrison JW; Beecraft L; Smith REH
    J Photochem Photobiol B; 2018 Dec; 189():36-48. PubMed ID: 30286338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.
    Hemsley VS; Smyth TJ; Martin AP; Frajka-Williams E; Thompson AF; Damerell G; Painter SC
    Environ Sci Technol; 2015 Oct; 49(19):11612-21. PubMed ID: 26301371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering.
    Loisel H; Stramski D
    Appl Opt; 2000 Jun; 39(18):3001-11. PubMed ID: 18345226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective upwelling irradiance depths in turbid waters: a spectral analysis of origins and fate.
    Ma R; Jiang G; Duan H; Bracchini L; Loiselle S
    Opt Express; 2011 Apr; 19(8):7127-38. PubMed ID: 21503026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources of variance of downwelling irradiance in water.
    Gege P; Pinnel N
    Appl Opt; 2011 May; 50(15):2192-203. PubMed ID: 21614112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.