These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18273300)

  • 61. Binary-phase zone-plate arrays based on hybrid solgel glass.
    Rantala JT; Ayräs P; Levy R; Honkanen S; Descour MR; Peyghambarian N
    Opt Lett; 1998 Dec; 23(24):1939-41. PubMed ID: 18091962
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analytical Fresnel imaging models for photon sieves.
    Oktem FS; Kamalabadi F; Davila JM
    Opt Express; 2018 Nov; 26(24):32259-32279. PubMed ID: 30650689
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.
    Chen G; Zhang K; Yu A; Wang X; Zhang Z; Li Y; Wen Z; Li C; Dai L; Jiang S; Lin F
    Opt Express; 2016 May; 24(10):11002-8. PubMed ID: 27409922
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fabrication of phase masks with variable diffraction efficiency using HEBS glass technology.
    Osuch T; Kowalik A; Jaroszewicz Z; Sarzyński M
    Appl Opt; 2011 Nov; 50(31):5977-82. PubMed ID: 22086023
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution.
    Feng D; Ou P; Feng LS; Hu SL; Zhang CX
    Opt Express; 2008 Dec; 16(25):20968-73. PubMed ID: 19065236
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pulse compression grating fabrication by diffractive proximity photolithography.
    Stuerzebecher L; Fuchs F; Harzendorf T; Zeitner UD
    Opt Lett; 2014 Feb; 39(4):1042-5. PubMed ID: 24562273
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Broadband performance limits of ultra-thin lenses using time-domain analysis.
    Teichman J
    Opt Express; 2021 Oct; 29(21):32804-32817. PubMed ID: 34809103
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optical quality of rotationally symmetrical contact lenses derived from their power profiles.
    Del Águila-Carrasco AJ; Monsálvez-Romín D; Papadatou E
    Cont Lens Anterior Eye; 2017 Oct; 40(5):346-350. PubMed ID: 28522252
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Shack-Hartmann multiple spots with diffractive lenses.
    Castignoles F; Lepine T; Chavel P; Cohen G
    Opt Lett; 2011 Apr; 36(8):1422-4. PubMed ID: 21499377
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses.
    Vega F; Alba-Bueno F; Millán MS; Varón C; Gil MA; Buil JA
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3967-75. PubMed ID: 26098463
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Binary optics and confocal imaging.
    Sheppard CJ
    Opt Lett; 1999 Apr; 24(8):505-6. PubMed ID: 18071553
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication and characterization of diffractive optical elements in InP for monolithic integration with surface-emitting components.
    Vukusic J; Bengtsson J; Ghisoni M; Larsson A; Carlström CF; Landgren G
    Appl Opt; 2000 Jan; 39(3):398-401. PubMed ID: 18337907
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Design and Fabrication of a Hybrid Diffractive Optical Device for Multiple-Line Generation over a Wide Angle.
    Neto LG; Roberto LB; Verdonck P; Mansano RD; Cirino GA; Stefani MA
    Appl Opt; 2001 Jan; 40(2):211-8. PubMed ID: 18356992
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of Decentration on the Optical Quality of Two Intraocular Lenses.
    Ortiz C; Esteve-Taboada JJ; Belda-Salmerón L; Monsálvez-Romín D; Domínguez-Vicent A
    Optom Vis Sci; 2016 Dec; 93(12):1552-1559. PubMed ID: 27776082
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication.
    Wang MR; Su H
    Appl Opt; 1998 Nov; 37(32):7568-76. PubMed ID: 18301593
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Depth of focus increase by multiplexing programmable diffractive lenses.
    Iemmi C; Campos J; Escalera JC; López-Coronado O; Gimeno R; Yzuel MJ
    Opt Express; 2006 Oct; 14(22):10207-19. PubMed ID: 19529416
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication of large-aperture lightweight diffractive lenses for use in space.
    Barton IM; Britten JA; Dixit SN; Summers LJ; Thomas IM; Rushford MC; Lu K; Hyde RA; Perry MD
    Appl Opt; 2001 Feb; 40(4):447-51. PubMed ID: 18357017
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors.
    Tamkin JM; Dallas WJ; Milster TD
    Appl Opt; 2010 Sep; 49(25):4814-24. PubMed ID: 20820225
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 10(-7) contrast ratio at 4.5lambda/D: New results obtained in laboratory experiments using nano-fabricated coronagraph and multi-Gaussian shaped pupil masks.
    Chakraborty A; Thompson L; Rogosky M
    Opt Express; 2005 Apr; 13(7):2394-402. PubMed ID: 19495130
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses.
    Yamada K; Watanabe W; Li Y; Itoh K; Nishii J
    Opt Lett; 2004 Aug; 29(16):1846-8. PubMed ID: 15357335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.