These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18273351)

  • 1. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter.
    Wulfmeyer V
    Appl Opt; 1998 Jun; 37(18):3804-24. PubMed ID: 18273351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar.
    Wulfmeyer V; Bösenberg J
    Opt Lett; 1996 Aug; 21(15):1150-2. PubMed ID: 19876282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar.
    Wulfmeyer V; Bösenberg J; Lehmann S; Senff C; Schmitz S
    Opt Lett; 1995 Mar; 20(6):638-40. PubMed ID: 19859281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.
    Wagner G; Behrendt A; Wulfmeyer V; Späth F; Schiller M
    Appl Opt; 2013 Apr; 52(11):2454-69. PubMed ID: 23670775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser.
    Wagner G; Wulfmeyer V; Behrendt A
    Appl Opt; 2011 Nov; 50(31):5921-37. PubMed ID: 22086016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology.
    Bösenberg J
    Appl Opt; 1998 Jun; 37(18):3845-60. PubMed ID: 18273353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injection-seeded pulsed alexandrite laser for differential absorption lidar application.
    Bruneau D; des Lions TA; Quaglia P; Pelon J
    Appl Opt; 1994 Jun; 33(18):3941-50. PubMed ID: 20935740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-switching system for injection seeding of a high-power Ti:sapphire laser.
    Khalesifard HR; Fix A; Ehret G; Schiller M; Wulfmeyer V
    Rev Sci Instrum; 2009 Jul; 80(7):073110. PubMed ID: 19655946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropulse water vapor differential absorption lidar: transmitter design and performance.
    Nehrir AR; Repasky KS; Carlsten JL
    Opt Express; 2012 Oct; 20(22):25137-51. PubMed ID: 23187280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water vapor differential absorption lidar development and evaluation.
    Browell EV; Wilkerson TD; McIlrath TJ
    Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized master laser system for differential absorption lidar.
    Dinovitser A; Hamilton MW; Vincent RA
    Appl Opt; 2010 Jun; 49(17):3274-81. PubMed ID: 20539344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system.
    Ponsardin P; Higdon NS; Grossmann BE; Browell EV
    Appl Opt; 1994 Sep; 33(27):6439-50. PubMed ID: 20941182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the performance of a diode laser-based (DLB) micro-pulse differential absorption lidar (MPD) for temperature profiling in the lower troposphere.
    Repasky KS; Bunn CE; Hayman M; Stillwell RA; Spuler SM
    Opt Express; 2019 Nov; 27(23):33543-33563. PubMed ID: 31878421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles.
    Browell EV; Carter AF; Shipley ST; Allen RJ; Butler CF; Mayo MN; Siviter JH; Hall WM
    Appl Opt; 1983 Feb; 22(4):522-34. PubMed ID: 18195821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station.
    Vogelmann H; Trickl T
    Appl Opt; 2008 Apr; 47(12):2116-32. PubMed ID: 18425187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature.
    Stillwell RA; Spuler SM; Hayman M; Repasky KS; Bunn CE
    Opt Express; 2020 Jan; 28(1):71-93. PubMed ID: 32118942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications.
    Wulfmeyer V; Bösenberg J
    Appl Opt; 1998 Jun; 37(18):3825-44. PubMed ID: 18273352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient.
    Bunn CE; Repasky KS; Hayman M; Stillwell RA; Spuler SM
    Appl Opt; 2018 Jun; 57(16):4440-4450. PubMed ID: 29877391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.
    Higdon NS; Browell EV; Ponsardin P; Grossmann BE; Butler CF; Chyba TH; Mayo MN; Allen RJ; Heuser AW; Grant WB; Ismail S; Mayor SD; Carter AF
    Appl Opt; 1994 Sep; 33(27):6422-38. PubMed ID: 20941181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.