These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18273750)

  • 21. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorption of uranyl ions on TiO
    Wang J; He B; Wei X; Li P; Liang J; Qiang S; Fan Q; Wu W
    J Environ Sci (China); 2019 Jan; 75():115-123. PubMed ID: 30473276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO
    Anđelković I; Amaizah NRR; Marković SB; Stanković D; Marković M; Kuzmanović D; Roglić G
    Environ Technol; 2017 Sep; 38(17):2233-2240. PubMed ID: 27804788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO
    Qi N; Wang P; Wang C; Ao Y
    J Hazard Mater; 2018 Jan; 341():187-197. PubMed ID: 28780433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferential sorption of some natural organic matter fractions to titanium dioxide nanoparticles: influence of pH and ionic strength.
    Mwaanga P; Carraway ER; Schlautman MA
    Environ Monit Assess; 2014 Dec; 186(12):8833-44. PubMed ID: 25213564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Background electrolytes and pH effects on selenate adsorption using iron-impregnated granular activated carbon and surface binding mechanisms.
    Zhang N; Gang DD; McDonald L; Lin LS
    Chemosphere; 2018 Mar; 195():166-174. PubMed ID: 29268175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.
    Kim J; Shan W; Davies SH; Baumann MJ; Masten SJ; Tarabara VV
    Environ Sci Technol; 2009 Jul; 43(14):5488-94. PubMed ID: 19708386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica.
    Bui TX; Choi H
    Chemosphere; 2010 Aug; 80(7):681-6. PubMed ID: 20591468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter.
    Smith B; Yang J; Bitter JL; Ball WP; Fairbrother DH
    Environ Sci Technol; 2012 Dec; 46(23):12839-47. PubMed ID: 23145852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of paraquat on mesoporous silica modified with titania: effects of pH, ionic strength and temperature.
    Brigante M; Schulz PC
    J Colloid Interface Sci; 2011 Nov; 363(1):355-61. PubMed ID: 21843892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.
    Bang S; Patel M; Lippincott L; Meng X
    Chemosphere; 2005 Jul; 60(3):389-97. PubMed ID: 15924958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of plasmid DNA to a natural organic matter-coated silica surface: kinetics, conformation, and reversibility.
    Nguyen TH; Elimelech M
    Langmuir; 2007 Mar; 23(6):3273-9. PubMed ID: 17286415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protonation of lysozymes and its consequences for the adsorption onto a mica surface.
    Jachimska B; Kozłowska A; Pajor-Świerzy A
    Langmuir; 2012 Aug; 28(31):11502-10. PubMed ID: 22783827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.
    French RA; Jacobson AR; Kim B; Isley SL; Penn RL; Baveye PC
    Environ Sci Technol; 2009 Mar; 43(5):1354-9. PubMed ID: 19350903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption of NOM onto Activated Carbon: Effect of Surface Charge, Ionic Strength, and Pore Volume Distribution.
    Bjelopavlic M; Newcombe G; Hayes R
    J Colloid Interface Sci; 1999 Feb; 210(2):271-280. PubMed ID: 9929414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions.
    Romanello MB; Fidalgo de Cortalezzi MM
    Water Res; 2013 Aug; 47(12):3887-98. PubMed ID: 23579091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between phospholipids and titanium dioxide particles.
    Le QC; Ropers MH; Terrisse H; Humbert B
    Colloids Surf B Biointerfaces; 2014 Nov; 123():150-7. PubMed ID: 25242734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of natural organic matter onto carbonaceous surfaces: atomic force microscopy study.
    Gorham JM; Wnuk JD; Shin M; Fairbrother H
    Environ Sci Technol; 2007 Feb; 41(4):1238-44. PubMed ID: 17593725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.