BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18273887)

  • 1. Differential distribution of SK channel subtypes in the brain of the weakly electric fish Apteronotus leptorhynchus.
    Ellis LD; Maler L; Dunn RJ
    J Comp Neurol; 2008 Apr; 507(6):1964-78. PubMed ID: 18273887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulated expression of N-methyl-D-aspartate receptors and associated proteins in teleost electrosensory system and telencephalon.
    Harvey-Girard E; Dunn RJ; Maler L
    J Comp Neurol; 2007 Dec; 505(6):644-68. PubMed ID: 17948874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic SK channels convert NMDA-R-dependent LTD to burst timing-dependent plasticity.
    Harvey-Girard E; Maler L
    J Neurophysiol; 2013 Dec; 110(12):2689-703. PubMed ID: 24047910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe.
    Motipally SI; Allen KM; Williamson DK; Marsat G
    Front Neural Circuits; 2019; 13():41. PubMed ID: 31213991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review.
    Huang CG; Chacron MJ
    Channels (Austin); 2017 Jul; 11(4):281-304. PubMed ID: 28277938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of muscarinic acetylcholine receptor mRNA in the brain of the weakly electric fish Apteronotus leptorhynchus.
    Toscano-Márquez B; Dunn RJ; Krahe R
    J Comp Neurol; 2013 Apr; 521(5):1054-72. PubMed ID: 22911562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap junction protein in weakly electric fish (Gymnotide): immunohistochemical localization with emphasis on structures of the electrosensory system.
    Yamamoto T; Maler L; Hertzberg EL; Nagy JI
    J Comp Neurol; 1989 Nov; 289(3):509-36. PubMed ID: 2553783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain.
    Chang SY; Zagha E; Kwon ES; Ozaita A; Bobik M; Martone ME; Ellisman MH; Heintz N; Rudy B
    J Comp Neurol; 2007 Jun; 502(6):953-72. PubMed ID: 17444489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and function of potassium channels in the electrosensory lateral line lobe of weakly electric apteronotid fish.
    Mehaffey WH; Fernandez FR; Rashid AJ; Dunn RJ; Turner RW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):637-48. PubMed ID: 16425062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential assembly of heteromeric small conductance calcium-activated potassium channels.
    Church TW; Weatherall KL; Corrêa SA; Prole DL; Brown JT; Marrion NV
    Eur J Neurosci; 2015 Feb; 41(3):305-15. PubMed ID: 25421315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prominent soma-dendritic distribution of Kv3.3 K+ channels in electrosensory and cerebellar neurons.
    Rashid AJ; Dunn RJ; Turner RW
    J Comp Neurol; 2001 Dec; 441(3):234-47. PubMed ID: 11745647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over-expression of a mammalian small conductance calcium-activated K+ channel in Pichia pastoris: effects of trafficking signals and subunit fusions.
    Licata L; Haase W; Eckhardt-Strelau L; Parcej DN
    Protein Expr Purif; 2006 May; 47(1):171-8. PubMed ID: 16290007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.
    Mehaffey WH; Maler L; Turner RW
    J Neurophysiol; 2008 May; 99(5):2641-55. PubMed ID: 18367702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SK channels in excitability, pacemaking and synaptic integration.
    Bond CT; Maylie J; Adelman JP
    Curr Opin Neurobiol; 2005 Jun; 15(3):305-11. PubMed ID: 15922588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate receptor localization in the brain of a weakly electric fish (Apteronotus leptorhynchus) with emphasis on the electrosensory system.
    Berman NJ; Hincke MT; Maler L
    J Comp Neurol; 1995 Oct; 361(3):512-24. PubMed ID: 8550896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain.
    Prüss H; Derst C; Lommel R; Veh RW
    Brain Res Mol Brain Res; 2005 Sep; 139(1):63-79. PubMed ID: 15936845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain.
    Sailer CA; Kaufmann WA; Marksteiner J; Knaus HG
    Mol Cell Neurosci; 2004 Jul; 26(3):458-69. PubMed ID: 15234350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.