BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 18273899)

  • 1. A putative exonic splicing enhancer in exon 7 of the PDHA1 gene affects splicing of adjacent exons.
    Ridout CK; Keighley P; Krywawych S; Brown RM; Brown GK
    Hum Mutat; 2008 Mar; 29(3):451. PubMed ID: 18273899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of exonic mutations leading to exon skipping in patients with pyruvate dehydrogenase E1 alpha deficiency.
    Cardozo AK; De Meirleir L; Liebaers I; Lissens W
    Pediatr Res; 2000 Dec; 48(6):748-53. PubMed ID: 11102541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two silent substitutions in the PDHA1 gene cause exon 5 skipping by disruption of a putative exonic splicing enhancer.
    Boichard A; Venet L; Naas T; Boutron A; Chevret L; de Baulny HO; De Lonlay P; Legrand A; Nordman P; Brivet M
    Mol Genet Metab; 2008 Mar; 93(3):323-30. PubMed ID: 18023225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic mosaicism in a male with an exon skipping mutation in PDHA1 of the pyruvate dehydrogenase complex results in a milder phenotype.
    Okajima K; Warman ML; Byrne LC; Kerr DS
    Mol Genet Metab; 2006 Feb; 87(2):162-8. PubMed ID: 16412675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment.
    Davis RL; Homer VM; George PM; Brennan SO
    Hum Mutat; 2009 Feb; 30(2):221-7. PubMed ID: 18853456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.
    Liu HX; Cartegni L; Zhang MQ; Krainer AR
    Nat Genet; 2001 Jan; 27(1):55-8. PubMed ID: 11137998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements.
    Disset A; Bourgeois CF; Benmalek N; Claustres M; Stevenin J; Tuffery-Giraud S
    Hum Mol Genet; 2006 Mar; 15(6):999-1013. PubMed ID: 16461336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.
    Shiga N; Takeshima Y; Sakamoto H; Inoue K; Yokota Y; Yokoyama M; Matsuo M
    J Clin Invest; 1997 Nov; 100(9):2204-10. PubMed ID: 9410897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strong exonic splicing enhancer in dystrophin exon 19 achieve proper splicing without an upstream polypyrimidine tract.
    Habara Y; Doshita M; Hirozawa S; Yokono Y; Yagi M; Takeshima Y; Matsuo M
    J Biochem; 2008 Mar; 143(3):303-10. PubMed ID: 18039686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the X-linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency.
    Lissens W; De Meirleir L; Seneca S; Liebaers I; Brown GK; Brown RM; Ito M; Naito E; Kuroda Y; Kerr DS; Wexler ID; Patel MS; Robinson BH; Seyda A
    Hum Mutat; 2000; 15(3):209-19. PubMed ID: 10679936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperation of 5' and 3' processing sites as well as intron and exon sequences in calcitonin exon recognition.
    Zandberg H; Moen TC; Baas PD
    Nucleic Acids Res; 1995 Jan; 23(2):248-55. PubMed ID: 7862529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Listening to silence and understanding nonsense: exonic mutations that affect splicing.
    Cartegni L; Chew SL; Krainer AR
    Nat Rev Genet; 2002 Apr; 3(4):285-98. PubMed ID: 11967553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of two novel mutations causing factor XI deficiency: A splicing defect and a missense mutation responsible for a CRM+ defect.
    Guella I; Soldà G; Spena S; Asselta R; Ghiotto R; Tenchini ML; Castaman G; Duga S
    Thromb Haemost; 2008 Mar; 99(3):523-30. PubMed ID: 18327400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1.
    Zatkova A; Messiaen L; Vandenbroucke I; Wieser R; Fonatsch C; Krainer AR; Wimmer K
    Hum Mutat; 2004 Dec; 24(6):491-501. PubMed ID: 15523642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene.
    Nakamura K; Fukao T; Perez-Cerda C; Luque C; Song XQ; Naiki Y; Kohno Y; Ugarte M; Kondo N
    Mol Genet Metab; 2001 Feb; 72(2):115-21. PubMed ID: 11161837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single base mutation in the 5' splice site of intron 7 of the lck gene is responsible for the deletion of exon 7 in lck mRNA of the JCaM1 cell line.
    Rouer E; Brule F; Benarous R
    Oncogene; 1999 Jul; 18(29):4262-8. PubMed ID: 10435639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exon inclusion is dependent on predictable exonic splicing enhancers.
    Zhang XH; Kangsamaksin T; Chao MS; Banerjee JK; Chasin LA
    Mol Cell Biol; 2005 Aug; 25(16):7323-32. PubMed ID: 16055740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex expression pattern of RPGR reveals a role for purine-rich exonic splicing enhancers.
    Hong DH; Li T
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3373-82. PubMed ID: 12407146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of three novel splicing mutations causing factor V deficiency and analysis of the F5 gene splicing pattern.
    Dall'Osso C; Guella I; Duga S; Locatelli N; Paraboschi EM; Spreafico M; Afrasiabi A; Pechlaner C; Peyvandi F; Tenchini ML; Asselta R
    Haematologica; 2008 Oct; 93(10):1505-13. PubMed ID: 18728029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.