BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18273947)

  • 1. The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation.
    Staszczak M
    Fungal Genet Biol; 2008 Mar; 45(3):328-37. PubMed ID: 18273947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the proteasome strongly affects cadmium stimulated laccase activity in Trametes versicolor.
    Staszczak M; Jarosz-Wilkołazka A
    Biochimie; 2005 Aug; 87(8):755-62. PubMed ID: 16054528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Ferulic Acid, a Phenolic Inducer of Fungal Laccase, on 26S Proteasome Activities In Vitro.
    Swatek A; Staszczak M
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32252291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the role of proteases in the white-rot fungus Trametes versicolor: effect of PMSF and chloroquine on ligninolytic enzymes activity.
    Staszczak M; Zdunek E; Leonowicz A
    J Basic Microbiol; 2000; 40(1):51-63. PubMed ID: 10746199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of laccase from the white rot fungus Trametes versicolor.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2005 Dec; 43(6):555-60. PubMed ID: 16410773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact assessment of bisphenol A on lignin-modifying enzymes by basidiomycete Trametes versicolor.
    Takamiya M; Magan N; Warner PJ
    J Hazard Mater; 2008 Jun; 154(1-3):33-7. PubMed ID: 17996365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots.
    Přenosilová L; Křesinová Z; Amemori AS; Cajthaml T; Svobodová K
    Microb Biotechnol; 2013 May; 6(3):300-6. PubMed ID: 23170978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes.
    Moldes D; Lorenzo M; Sanromán MA
    Biotechnol Lett; 2004 Feb; 26(4):327-30. PubMed ID: 15055770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor.
    Marco-Urrea E; Parella T; Gabarrell X; Caminal G; Vicent T; Adinarayana Reddy C
    Chemosphere; 2008 Jan; 70(3):404-10. PubMed ID: 17697698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of laccase production by Trametes versicolor cultivated on industrial waste.
    Tišma M; Znidaršič-Plazl P; Vasić-Rački D; Zelić B
    Appl Biochem Biotechnol; 2012 Jan; 166(1):36-46. PubMed ID: 21989801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.
    Su Y; Xian H; Shi S; Zhang C; Manik SM; Mao J; Zhang G; Liao W; Wang Q; Liu H
    BMC Biotechnol; 2016 Nov; 16(1):81. PubMed ID: 27871279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates.
    Levin L; Melignani E; Ramos AM
    Bioresour Technol; 2010 Jun; 101(12):4554-63. PubMed ID: 20153961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of phenanthrene by Trametes versicolor and its laccase.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2004 Jun; 42(2):94-8. PubMed ID: 15357301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of laccase activity during interspecific interactions of white-rot fungi.
    Baldrian P
    FEMS Microbiol Ecol; 2004 Nov; 50(3):245-53. PubMed ID: 19712364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities.
    Tišma M; Žnidaršič-Plazl P; Šelo G; Tolj I; Šperanda M; Bucić-Kojić A; Planinić M
    Bioresour Technol; 2021 Jun; 330():124997. PubMed ID: 33752945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of ligninolytic fungi for biological pretreatment of lignocellulosic biomass.
    Xu C; Singh D; Dorgan KM; Zhang X; Chen S
    Can J Microbiol; 2015 Oct; 61(10):745-52. PubMed ID: 26286682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin-proteasome pathway mediates degradation of APH-1.
    He G; Qing H; Cai F; Kwok C; Xu H; Yu G; Bernstein A; Song W
    J Neurochem; 2006 Dec; 99(5):1403-12. PubMed ID: 17059559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leishmania donovani: proteasome-mediated down-regulation of methionine adenosyltransferase.
    Pérez-Pertejo Y; Alvarez-Velilla R; Estrada CG; Balaña-Fouce R; Reguera RM
    Parasitology; 2011 Aug; 138(9):1082-92. PubMed ID: 21813028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica.
    Dong JL; Zhang YW; Zhang RH; Huang WZ; Zhang YZ
    J Basic Microbiol; 2005; 45(3):190-8. PubMed ID: 15902692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.