These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Quantitative nucleic acids footprinting: thermodynamic and kinetic approaches. Petri V; Brenowitz M Curr Opin Biotechnol; 1997 Feb; 8(1):36-44. PubMed ID: 9013649 [TBL] [Abstract][Full Text] [Related]
43. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Wilkinson KA; Merino EJ; Weeks KM Nat Protoc; 2006; 1(3):1610-6. PubMed ID: 17406453 [TBL] [Abstract][Full Text] [Related]
44. Chemical Generation of Hydroxyl Radical for Oxidative 'Footprinting'. Leser M; Chapman JR; Khine M; Pegan J; Law M; Makkaoui ME; Ueberheide BM; Brenowitz M Protein Pept Lett; 2019; 26(1):61-69. PubMed ID: 30543161 [TBL] [Abstract][Full Text] [Related]
45. Constructing accurate contact maps for hydroxyl-radical-cleavage-based high-throughput RNA structure inference. Kim J; Kim H; Min H; Yoon S IEEE Trans Biomed Eng; 2011 May; 58(5):1347-55. PubMed ID: 21292588 [TBL] [Abstract][Full Text] [Related]
46. Structural interpretation of DNA-protein hydroxyl-radical footprinting experiments with high resolution using HYDROID. Shaytan AK; Xiao H; Armeev GA; Gaykalova DA; Komarova GA; Wu C; Studitsky VM; Landsman D; Panchenko AR Nat Protoc; 2018 Nov; 13(11):2535-2556. PubMed ID: 30341436 [TBL] [Abstract][Full Text] [Related]
47. Structural analysis of RNA in living cells by in vivo synchrotron X-ray footprinting. Adilakshmi T; Soper SF; Woodson SA Methods Enzymol; 2009; 468():239-58. PubMed ID: 20946773 [TBL] [Abstract][Full Text] [Related]
48. Hydroxyl radical detection with a salicylate probe using modified CUPRAC spectrophotometry and HPLC. Bektaşoğlu B; Ozyürek M; Güçlü K; Apak R Talanta; 2008 Oct; 77(1):90-7. PubMed ID: 18804604 [TBL] [Abstract][Full Text] [Related]
49. An atomic mutation cycle for exploring RNA's 2'-hydroxyl group. Hougland JL; Deb SK; Maric D; Piccirilli JA J Am Chem Soc; 2004 Oct; 126(42):13578-9. PubMed ID: 15493890 [TBL] [Abstract][Full Text] [Related]
52. Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid. Freinbichler W; Tipton KF; Corte LD; Linert W J Inorg Biochem; 2009 Jan; 103(1):28-34. PubMed ID: 18848726 [TBL] [Abstract][Full Text] [Related]
53. Translocation of structured polynucleotides through nanopores. Gerland U; Bundschuh R; Hwa T Phys Biol; 2004 Jun; 1(1-2):19-26. PubMed ID: 16204818 [TBL] [Abstract][Full Text] [Related]
54. Advanced oxidation processes: mechanistic aspects. von Sonntag C Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799 [TBL] [Abstract][Full Text] [Related]
55. Nucleic acid fragmentation on the millisecond timescale using a conventional X-ray rotating anode source: application to protein-DNA footprinting. Henn A; Halfon J; Kela I; Orion I; Sagi I Nucleic Acids Res; 2001 Dec; 29(24):E122. PubMed ID: 11812859 [TBL] [Abstract][Full Text] [Related]
56. 2'-Fluoro substituents can mimic native 2'-hydroxyls within structured RNA. Forconi M; Schwans JP; Porecha RH; Sengupta RN; Piccirilli JA; Herschlag D Chem Biol; 2011 Aug; 18(8):949-54. PubMed ID: 21867910 [TBL] [Abstract][Full Text] [Related]
57. Novel iron(III) porphyrazine complex. Complex speciation and reactions with NO and H2O2. Theodoridis A; Maigut J; Puchta R; Kudrik EV; van Eldik R Inorg Chem; 2008 Apr; 47(8):2994-3013. PubMed ID: 18351731 [TBL] [Abstract][Full Text] [Related]
58. Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics. Bingaman JL; Messina KJ; Bevilacqua PC Methods; 2017 May; 120():125-134. PubMed ID: 28315484 [TBL] [Abstract][Full Text] [Related]
59. A simple electrochemical method for the determination of hydroxyl free radicals without separation process. Hu YL; Lu Y; Zhou GJ; Xia XH Talanta; 2008 Jan; 74(4):760-5. PubMed ID: 18371706 [TBL] [Abstract][Full Text] [Related]