These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18274604)

  • 1. An algorithm for idle-state detection in motor-imagery-based brain-computer interface.
    Zhang D; Wang Y; Gao X; Hong B; Gao S
    Comput Intell Neurosci; 2007; 2007():39714. PubMed ID: 18274604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 3. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Steps Toward a Motor Imagery Based Stroke BCI: New Strategy to Set up a Classifier.
    Kaiser V; Kreilinger A; Müller-Putz GR; Neuper C
    Front Neurosci; 2011; 5():86. PubMed ID: 21779234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
    Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G
    Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia.
    Chen S; Shu X; Wang H; Ding L; Fu J; Jia J
    Front Neurorobot; 2021; 15():706630. PubMed ID: 34803647
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance.
    Kang JH; Youn J; Kim SH; Kim J
    Front Neurosci; 2021; 15():663101. PubMed ID: 34483816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A performance based feature selection technique for subject independent MI based BCI.
    Joadder MAM; Myszewski JJ; Rahman MH; Wang I
    Health Inf Sci Syst; 2019 Dec; 7(1):15. PubMed ID: 31428313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.
    Shan H; Xu H; Zhu S; He B
    Biomed Eng Online; 2015 Oct; 14():93. PubMed ID: 26489759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New
    Wu F; Gong A; Li H; Zhao L; Zhang W; Fu Y
    Front Hum Neurosci; 2021; 15():595723. PubMed ID: 33762911
    [No Abstract]   [Full Text] [Related]  

  • 17. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification.
    Miao Y; Jin J; Daly I; Zuo C; Wang X; Cichocki A; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():699-707. PubMed ID: 33819158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long Multi-Stage Training for a Motor-Impaired User in a BCI Competition.
    Turi F; Clerc M; Papadopoulo T
    Front Hum Neurosci; 2021; 15():647908. PubMed ID: 33841120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface.
    Triana-Guzman N; Orjuela-Cañon AD; Jutinico AL; Mendoza-Montoya O; Antelis JM
    Front Neuroinform; 2022; 16():961089. PubMed ID: 36120085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.